MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  swopolem Structured version   Unicode version

Theorem swopolem 4655
Description: Perform the substitutions into the strict weak ordering law. (Contributed by Mario Carneiro, 31-Dec-2014.)
Hypothesis
Ref Expression
swopolem.1  |-  ( (
ph  /\  ( x  e.  A  /\  y  e.  A  /\  z  e.  A ) )  -> 
( x R y  ->  ( x R z  \/  z R y ) ) )
Assertion
Ref Expression
swopolem  |-  ( (
ph  /\  ( X  e.  A  /\  Y  e.  A  /\  Z  e.  A ) )  -> 
( X R Y  ->  ( X R Z  \/  Z R Y ) ) )
Distinct variable groups:    x, y,
z, A    ph, x, y, z    x, R, y, z    x, X, y, z    y, Y, z   
z, Z
Allowed substitution hints:    Y( x)    Z( x, y)

Proof of Theorem swopolem
StepHypRef Expression
1 swopolem.1 . . 3  |-  ( (
ph  /\  ( x  e.  A  /\  y  e.  A  /\  z  e.  A ) )  -> 
( x R y  ->  ( x R z  \/  z R y ) ) )
21ralrimivvva 2814 . 2  |-  ( ph  ->  A. x  e.  A  A. y  e.  A  A. z  e.  A  ( x R y  ->  ( x R z  \/  z R y ) ) )
3 breq1 4300 . . . 4  |-  ( x  =  X  ->  (
x R y  <->  X R
y ) )
4 breq1 4300 . . . . 5  |-  ( x  =  X  ->  (
x R z  <->  X R
z ) )
54orbi1d 702 . . . 4  |-  ( x  =  X  ->  (
( x R z  \/  z R y )  <->  ( X R z  \/  z R y ) ) )
63, 5imbi12d 320 . . 3  |-  ( x  =  X  ->  (
( x R y  ->  ( x R z  \/  z R y ) )  <->  ( X R y  ->  ( X R z  \/  z R y ) ) ) )
7 breq2 4301 . . . 4  |-  ( y  =  Y  ->  ( X R y  <->  X R Y ) )
8 breq2 4301 . . . . 5  |-  ( y  =  Y  ->  (
z R y  <->  z R Y ) )
98orbi2d 701 . . . 4  |-  ( y  =  Y  ->  (
( X R z  \/  z R y )  <->  ( X R z  \/  z R Y ) ) )
107, 9imbi12d 320 . . 3  |-  ( y  =  Y  ->  (
( X R y  ->  ( X R z  \/  z R y ) )  <->  ( X R Y  ->  ( X R z  \/  z R Y ) ) ) )
11 breq2 4301 . . . . 5  |-  ( z  =  Z  ->  ( X R z  <->  X R Z ) )
12 breq1 4300 . . . . 5  |-  ( z  =  Z  ->  (
z R Y  <->  Z R Y ) )
1311, 12orbi12d 709 . . . 4  |-  ( z  =  Z  ->  (
( X R z  \/  z R Y )  <->  ( X R Z  \/  Z R Y ) ) )
1413imbi2d 316 . . 3  |-  ( z  =  Z  ->  (
( X R Y  ->  ( X R z  \/  z R Y ) )  <->  ( X R Y  ->  ( X R Z  \/  Z R Y ) ) ) )
156, 10, 14rspc3v 3087 . 2  |-  ( ( X  e.  A  /\  Y  e.  A  /\  Z  e.  A )  ->  ( A. x  e.  A  A. y  e.  A  A. z  e.  A  ( x R y  ->  ( x R z  \/  z R y ) )  ->  ( X R Y  ->  ( X R Z  \/  Z R Y ) ) ) )
162, 15mpan9 469 1  |-  ( (
ph  /\  ( X  e.  A  /\  Y  e.  A  /\  Z  e.  A ) )  -> 
( X R Y  ->  ( X R Z  \/  Z R Y ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    \/ wo 368    /\ wa 369    /\ w3a 965    = wceq 1369    e. wcel 1756   A.wral 2720   class class class wbr 4297
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2573  df-ral 2725  df-rab 2729  df-v 2979  df-dif 3336  df-un 3338  df-in 3340  df-ss 3347  df-nul 3643  df-if 3797  df-sn 3883  df-pr 3885  df-op 3889  df-br 4298
This theorem is referenced by:  swoer  7134  swoord1  7135  swoord2  7136
  Copyright terms: Public domain W3C validator