MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  supxrun Structured version   Unicode version

Theorem supxrun 11562
Description: The supremum of the union of two sets of extended reals equals the largest of their suprema. (Contributed by NM, 19-Jan-2006.)
Assertion
Ref Expression
supxrun  |-  ( ( A  C_  RR*  /\  B  C_ 
RR*  /\  sup ( A ,  RR* ,  <  )  <_  sup ( B ,  RR* ,  <  ) )  ->  sup ( ( A  u.  B ) , 
RR* ,  <  )  =  sup ( B ,  RR* ,  <  ) )

Proof of Theorem supxrun
Dummy variables  x  y  z  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 unss 3619 . . . 4  |-  ( ( A  C_  RR*  /\  B  C_ 
RR* )  <->  ( A  u.  B )  C_  RR* )
21biimpi 196 . . 3  |-  ( ( A  C_  RR*  /\  B  C_ 
RR* )  ->  ( A  u.  B )  C_ 
RR* )
323adant3 1019 . 2  |-  ( ( A  C_  RR*  /\  B  C_ 
RR*  /\  sup ( A ,  RR* ,  <  )  <_  sup ( B ,  RR* ,  <  ) )  ->  ( A  u.  B )  C_  RR* )
4 supxrcl 11561 . . 3  |-  ( B 
C_  RR*  ->  sup ( B ,  RR* ,  <  )  e.  RR* )
543ad2ant2 1021 . 2  |-  ( ( A  C_  RR*  /\  B  C_ 
RR*  /\  sup ( A ,  RR* ,  <  )  <_  sup ( B ,  RR* ,  <  ) )  ->  sup ( B ,  RR* ,  <  )  e. 
RR* )
6 elun 3586 . . . 4  |-  ( x  e.  ( A  u.  B )  <->  ( x  e.  A  \/  x  e.  B ) )
7 xrltso 11402 . . . . . . . . 9  |-  <  Or  RR*
87a1i 11 . . . . . . . 8  |-  ( A 
C_  RR*  ->  <  Or  RR* )
9 xrsupss 11555 . . . . . . . 8  |-  ( A 
C_  RR*  ->  E. y  e.  RR*  ( A. z  e.  A  -.  y  <  z  /\  A. z  e.  RR*  ( z  < 
y  ->  E. w  e.  A  z  <  w ) ) )
108, 9supub 7954 . . . . . . 7  |-  ( A 
C_  RR*  ->  ( x  e.  A  ->  -.  sup ( A ,  RR* ,  <  )  <  x ) )
11103ad2ant1 1020 . . . . . 6  |-  ( ( A  C_  RR*  /\  B  C_ 
RR*  /\  sup ( A ,  RR* ,  <  )  <_  sup ( B ,  RR* ,  <  ) )  ->  ( x  e.  A  ->  -.  sup ( A ,  RR* ,  <  )  <  x ) )
12 supxrcl 11561 . . . . . . . . . . . . 13  |-  ( A 
C_  RR*  ->  sup ( A ,  RR* ,  <  )  e.  RR* )
1312ad2antrr 726 . . . . . . . . . . . 12  |-  ( ( ( A  C_  RR*  /\  B  C_ 
RR* )  /\  x  e.  A )  ->  sup ( A ,  RR* ,  <  )  e.  RR* )
144ad2antlr 727 . . . . . . . . . . . 12  |-  ( ( ( A  C_  RR*  /\  B  C_ 
RR* )  /\  x  e.  A )  ->  sup ( B ,  RR* ,  <  )  e.  RR* )
15 ssel2 3439 . . . . . . . . . . . . 13  |-  ( ( A  C_  RR*  /\  x  e.  A )  ->  x  e.  RR* )
1615adantlr 715 . . . . . . . . . . . 12  |-  ( ( ( A  C_  RR*  /\  B  C_ 
RR* )  /\  x  e.  A )  ->  x  e.  RR* )
17 xrlelttr 11414 . . . . . . . . . . . 12  |-  ( ( sup ( A ,  RR* ,  <  )  e. 
RR*  /\  sup ( B ,  RR* ,  <  )  e.  RR*  /\  x  e.  RR* )  ->  (
( sup ( A ,  RR* ,  <  )  <_  sup ( B ,  RR* ,  <  )  /\  sup ( B ,  RR* ,  <  )  <  x
)  ->  sup ( A ,  RR* ,  <  )  <  x ) )
1813, 14, 16, 17syl3anc 1232 . . . . . . . . . . 11  |-  ( ( ( A  C_  RR*  /\  B  C_ 
RR* )  /\  x  e.  A )  ->  (
( sup ( A ,  RR* ,  <  )  <_  sup ( B ,  RR* ,  <  )  /\  sup ( B ,  RR* ,  <  )  <  x
)  ->  sup ( A ,  RR* ,  <  )  <  x ) )
1918expdimp 437 . . . . . . . . . 10  |-  ( ( ( ( A  C_  RR* 
/\  B  C_  RR* )  /\  x  e.  A
)  /\  sup ( A ,  RR* ,  <  )  <_  sup ( B ,  RR* ,  <  ) )  ->  ( sup ( B ,  RR* ,  <  )  <  x  ->  sup ( A ,  RR* ,  <  )  <  x ) )
2019con3d 135 . . . . . . . . 9  |-  ( ( ( ( A  C_  RR* 
/\  B  C_  RR* )  /\  x  e.  A
)  /\  sup ( A ,  RR* ,  <  )  <_  sup ( B ,  RR* ,  <  ) )  ->  ( -.  sup ( A ,  RR* ,  <  )  <  x  ->  -.  sup ( B ,  RR* ,  <  )  <  x
) )
2120exp41 610 . . . . . . . 8  |-  ( A 
C_  RR*  ->  ( B  C_ 
RR*  ->  ( x  e.  A  ->  ( sup ( A ,  RR* ,  <  )  <_  sup ( B ,  RR* ,  <  )  -> 
( -.  sup ( A ,  RR* ,  <  )  <  x  ->  -.  sup ( B ,  RR* ,  <  )  <  x
) ) ) ) )
2221com34 85 . . . . . . 7  |-  ( A 
C_  RR*  ->  ( B  C_ 
RR*  ->  ( sup ( A ,  RR* ,  <  )  <_  sup ( B ,  RR* ,  <  )  -> 
( x  e.  A  ->  ( -.  sup ( A ,  RR* ,  <  )  <  x  ->  -.  sup ( B ,  RR* ,  <  )  <  x
) ) ) ) )
23223imp 1193 . . . . . 6  |-  ( ( A  C_  RR*  /\  B  C_ 
RR*  /\  sup ( A ,  RR* ,  <  )  <_  sup ( B ,  RR* ,  <  ) )  ->  ( x  e.  A  ->  ( -.  sup ( A ,  RR* ,  <  )  <  x  ->  -.  sup ( B ,  RR* ,  <  )  <  x ) ) )
2411, 23mpdd 40 . . . . 5  |-  ( ( A  C_  RR*  /\  B  C_ 
RR*  /\  sup ( A ,  RR* ,  <  )  <_  sup ( B ,  RR* ,  <  ) )  ->  ( x  e.  A  ->  -.  sup ( B ,  RR* ,  <  )  <  x ) )
257a1i 11 . . . . . . 7  |-  ( B 
C_  RR*  ->  <  Or  RR* )
26 xrsupss 11555 . . . . . . 7  |-  ( B 
C_  RR*  ->  E. y  e.  RR*  ( A. z  e.  B  -.  y  <  z  /\  A. z  e.  RR*  ( z  < 
y  ->  E. w  e.  B  z  <  w ) ) )
2725, 26supub 7954 . . . . . 6  |-  ( B 
C_  RR*  ->  ( x  e.  B  ->  -.  sup ( B ,  RR* ,  <  )  <  x ) )
28273ad2ant2 1021 . . . . 5  |-  ( ( A  C_  RR*  /\  B  C_ 
RR*  /\  sup ( A ,  RR* ,  <  )  <_  sup ( B ,  RR* ,  <  ) )  ->  ( x  e.  B  ->  -.  sup ( B ,  RR* ,  <  )  <  x ) )
2924, 28jaod 380 . . . 4  |-  ( ( A  C_  RR*  /\  B  C_ 
RR*  /\  sup ( A ,  RR* ,  <  )  <_  sup ( B ,  RR* ,  <  ) )  ->  ( ( x  e.  A  \/  x  e.  B )  ->  -.  sup ( B ,  RR* ,  <  )  <  x
) )
306, 29syl5bi 219 . . 3  |-  ( ( A  C_  RR*  /\  B  C_ 
RR*  /\  sup ( A ,  RR* ,  <  )  <_  sup ( B ,  RR* ,  <  ) )  ->  ( x  e.  ( A  u.  B
)  ->  -.  sup ( B ,  RR* ,  <  )  <  x ) )
3130ralrimiv 2818 . 2  |-  ( ( A  C_  RR*  /\  B  C_ 
RR*  /\  sup ( A ,  RR* ,  <  )  <_  sup ( B ,  RR* ,  <  ) )  ->  A. x  e.  ( A  u.  B )  -.  sup ( B ,  RR* ,  <  )  <  x )
32 rexr 9671 . . . . . . 7  |-  ( x  e.  RR  ->  x  e.  RR* )
33 xrsupss 11555 . . . . . . . 8  |-  ( B 
C_  RR*  ->  E. x  e.  RR*  ( A. z  e.  B  -.  x  <  z  /\  A. z  e.  RR*  ( z  < 
x  ->  E. y  e.  B  z  <  y ) ) )
3425, 33suplub 7955 . . . . . . 7  |-  ( B 
C_  RR*  ->  ( (
x  e.  RR*  /\  x  <  sup ( B ,  RR* ,  <  ) )  ->  E. y  e.  B  x  <  y ) )
3532, 34sylani 654 . . . . . 6  |-  ( B 
C_  RR*  ->  ( (
x  e.  RR  /\  x  <  sup ( B ,  RR* ,  <  ) )  ->  E. y  e.  B  x  <  y ) )
36 elun2 3613 . . . . . . . 8  |-  ( y  e.  B  ->  y  e.  ( A  u.  B
) )
3736anim1i 568 . . . . . . 7  |-  ( ( y  e.  B  /\  x  <  y )  -> 
( y  e.  ( A  u.  B )  /\  x  <  y
) )
3837reximi2 2873 . . . . . 6  |-  ( E. y  e.  B  x  <  y  ->  E. y  e.  ( A  u.  B
) x  <  y
)
3935, 38syl6 33 . . . . 5  |-  ( B 
C_  RR*  ->  ( (
x  e.  RR  /\  x  <  sup ( B ,  RR* ,  <  ) )  ->  E. y  e.  ( A  u.  B ) x  <  y ) )
4039expd 436 . . . 4  |-  ( B 
C_  RR*  ->  ( x  e.  RR  ->  ( x  <  sup ( B ,  RR* ,  <  )  ->  E. y  e.  ( A  u.  B )
x  <  y )
) )
4140ralrimiv 2818 . . 3  |-  ( B 
C_  RR*  ->  A. x  e.  RR  ( x  <  sup ( B ,  RR* ,  <  )  ->  E. y  e.  ( A  u.  B
) x  <  y
) )
42413ad2ant2 1021 . 2  |-  ( ( A  C_  RR*  /\  B  C_ 
RR*  /\  sup ( A ,  RR* ,  <  )  <_  sup ( B ,  RR* ,  <  ) )  ->  A. x  e.  RR  ( x  <  sup ( B ,  RR* ,  <  )  ->  E. y  e.  ( A  u.  B ) x  <  y ) )
43 supxr 11559 . 2  |-  ( ( ( ( A  u.  B )  C_  RR*  /\  sup ( B ,  RR* ,  <  )  e.  RR* )  /\  ( A. x  e.  ( A  u.  B )  -.  sup ( B ,  RR* ,  <  )  < 
x  /\  A. x  e.  RR  ( x  <  sup ( B ,  RR* ,  <  )  ->  E. y  e.  ( A  u.  B
) x  <  y
) ) )  ->  sup ( ( A  u.  B ) ,  RR* ,  <  )  =  sup ( B ,  RR* ,  <  ) )
443, 5, 31, 42, 43syl22anc 1233 1  |-  ( ( A  C_  RR*  /\  B  C_ 
RR*  /\  sup ( A ,  RR* ,  <  )  <_  sup ( B ,  RR* ,  <  ) )  ->  sup ( ( A  u.  B ) , 
RR* ,  <  )  =  sup ( B ,  RR* ,  <  ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    \/ wo 368    /\ wa 369    /\ w3a 976    = wceq 1407    e. wcel 1844   A.wral 2756   E.wrex 2757    u. cun 3414    C_ wss 3416   class class class wbr 4397    Or wor 4745   supcsup 7936   RRcr 9523   RR*cxr 9659    < clt 9660    <_ cle 9661
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1641  ax-4 1654  ax-5 1727  ax-6 1773  ax-7 1816  ax-8 1846  ax-9 1848  ax-10 1863  ax-11 1868  ax-12 1880  ax-13 2028  ax-ext 2382  ax-sep 4519  ax-nul 4527  ax-pow 4574  ax-pr 4632  ax-un 6576  ax-cnex 9580  ax-resscn 9581  ax-1cn 9582  ax-icn 9583  ax-addcl 9584  ax-addrcl 9585  ax-mulcl 9586  ax-mulrcl 9587  ax-mulcom 9588  ax-addass 9589  ax-mulass 9590  ax-distr 9591  ax-i2m1 9592  ax-1ne0 9593  ax-1rid 9594  ax-rnegex 9595  ax-rrecex 9596  ax-cnre 9597  ax-pre-lttri 9598  ax-pre-lttrn 9599  ax-pre-ltadd 9600  ax-pre-mulgt0 9601  ax-pre-sup 9602
This theorem depends on definitions:  df-bi 187  df-or 370  df-an 371  df-3or 977  df-3an 978  df-tru 1410  df-ex 1636  df-nf 1640  df-sb 1766  df-eu 2244  df-mo 2245  df-clab 2390  df-cleq 2396  df-clel 2399  df-nfc 2554  df-ne 2602  df-nel 2603  df-ral 2761  df-rex 2762  df-reu 2763  df-rmo 2764  df-rab 2765  df-v 3063  df-sbc 3280  df-csb 3376  df-dif 3419  df-un 3421  df-in 3423  df-ss 3430  df-nul 3741  df-if 3888  df-pw 3959  df-sn 3975  df-pr 3977  df-op 3981  df-uni 4194  df-br 4398  df-opab 4456  df-mpt 4457  df-id 4740  df-po 4746  df-so 4747  df-xp 4831  df-rel 4832  df-cnv 4833  df-co 4834  df-dm 4835  df-rn 4836  df-res 4837  df-ima 4838  df-iota 5535  df-fun 5573  df-fn 5574  df-f 5575  df-f1 5576  df-fo 5577  df-f1o 5578  df-fv 5579  df-riota 6242  df-ov 6283  df-oprab 6284  df-mpt2 6285  df-er 7350  df-en 7557  df-dom 7558  df-sdom 7559  df-sup 7937  df-pnf 9662  df-mnf 9663  df-xr 9664  df-ltxr 9665  df-le 9666  df-sub 9845  df-neg 9846
This theorem is referenced by:  supxrmnf  11564  xpsdsval  21178
  Copyright terms: Public domain W3C validator