MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  supxrleub Structured version   Unicode version

Theorem supxrleub 11393
Description: The supremum of a set of extended reals is less than or equal to an upper bound. (Contributed by NM, 22-Feb-2006.) (Revised by Mario Carneiro, 6-Sep-2014.)
Assertion
Ref Expression
supxrleub  |-  ( ( A  C_  RR*  /\  B  e.  RR* )  ->  ( sup ( A ,  RR* ,  <  )  <_  B  <->  A. x  e.  A  x  <_  B ) )
Distinct variable groups:    x, A    x, B

Proof of Theorem supxrleub
StepHypRef Expression
1 supxrlub 11392 . . . 4  |-  ( ( A  C_  RR*  /\  B  e.  RR* )  ->  ( B  <  sup ( A ,  RR* ,  <  )  <->  E. x  e.  A  B  <  x ) )
21notbid 294 . . 3  |-  ( ( A  C_  RR*  /\  B  e.  RR* )  ->  ( -.  B  <  sup ( A ,  RR* ,  <  )  <->  -.  E. x  e.  A  B  <  x ) )
3 ralnex 2846 . . 3  |-  ( A. x  e.  A  -.  B  <  x  <->  -.  E. x  e.  A  B  <  x )
42, 3syl6bbr 263 . 2  |-  ( ( A  C_  RR*  /\  B  e.  RR* )  ->  ( -.  B  <  sup ( A ,  RR* ,  <  )  <->  A. x  e.  A  -.  B  <  x ) )
5 supxrcl 11381 . . 3  |-  ( A 
C_  RR*  ->  sup ( A ,  RR* ,  <  )  e.  RR* )
6 xrlenlt 9546 . . 3  |-  ( ( sup ( A ,  RR* ,  <  )  e. 
RR*  /\  B  e.  RR* )  ->  ( sup ( A ,  RR* ,  <  )  <_  B  <->  -.  B  <  sup ( A ,  RR* ,  <  ) ) )
75, 6sylan 471 . 2  |-  ( ( A  C_  RR*  /\  B  e.  RR* )  ->  ( sup ( A ,  RR* ,  <  )  <_  B  <->  -.  B  <  sup ( A ,  RR* ,  <  ) ) )
8 simpl 457 . . . . 5  |-  ( ( A  C_  RR*  /\  B  e.  RR* )  ->  A  C_ 
RR* )
98sselda 3457 . . . 4  |-  ( ( ( A  C_  RR*  /\  B  e.  RR* )  /\  x  e.  A )  ->  x  e.  RR* )
10 simplr 754 . . . 4  |-  ( ( ( A  C_  RR*  /\  B  e.  RR* )  /\  x  e.  A )  ->  B  e.  RR* )
11 xrlenlt 9546 . . . 4  |-  ( ( x  e.  RR*  /\  B  e.  RR* )  ->  (
x  <_  B  <->  -.  B  <  x ) )
129, 10, 11syl2anc 661 . . 3  |-  ( ( ( A  C_  RR*  /\  B  e.  RR* )  /\  x  e.  A )  ->  (
x  <_  B  <->  -.  B  <  x ) )
1312ralbidva 2839 . 2  |-  ( ( A  C_  RR*  /\  B  e.  RR* )  ->  ( A. x  e.  A  x  <_  B  <->  A. x  e.  A  -.  B  <  x ) )
144, 7, 133bitr4d 285 1  |-  ( ( A  C_  RR*  /\  B  e.  RR* )  ->  ( sup ( A ,  RR* ,  <  )  <_  B  <->  A. x  e.  A  x  <_  B ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369    e. wcel 1758   A.wral 2795   E.wrex 2796    C_ wss 3429   class class class wbr 4393   supcsup 7794   RR*cxr 9521    < clt 9522    <_ cle 9523
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1952  ax-ext 2430  ax-sep 4514  ax-nul 4522  ax-pow 4571  ax-pr 4632  ax-un 6475  ax-cnex 9442  ax-resscn 9443  ax-1cn 9444  ax-icn 9445  ax-addcl 9446  ax-addrcl 9447  ax-mulcl 9448  ax-mulrcl 9449  ax-mulcom 9450  ax-addass 9451  ax-mulass 9452  ax-distr 9453  ax-i2m1 9454  ax-1ne0 9455  ax-1rid 9456  ax-rnegex 9457  ax-rrecex 9458  ax-cnre 9459  ax-pre-lttri 9460  ax-pre-lttrn 9461  ax-pre-ltadd 9462  ax-pre-mulgt0 9463  ax-pre-sup 9464
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2264  df-mo 2265  df-clab 2437  df-cleq 2443  df-clel 2446  df-nfc 2601  df-ne 2646  df-nel 2647  df-ral 2800  df-rex 2801  df-reu 2802  df-rmo 2803  df-rab 2804  df-v 3073  df-sbc 3288  df-csb 3390  df-dif 3432  df-un 3434  df-in 3436  df-ss 3443  df-nul 3739  df-if 3893  df-pw 3963  df-sn 3979  df-pr 3981  df-op 3985  df-uni 4193  df-br 4394  df-opab 4452  df-mpt 4453  df-id 4737  df-po 4742  df-so 4743  df-xp 4947  df-rel 4948  df-cnv 4949  df-co 4950  df-dm 4951  df-rn 4952  df-res 4953  df-ima 4954  df-iota 5482  df-fun 5521  df-fn 5522  df-f 5523  df-f1 5524  df-fo 5525  df-f1o 5526  df-fv 5527  df-riota 6154  df-ov 6196  df-oprab 6197  df-mpt2 6198  df-er 7204  df-en 7414  df-dom 7415  df-sdom 7416  df-sup 7795  df-pnf 9524  df-mnf 9525  df-xr 9526  df-ltxr 9527  df-le 9528  df-sub 9701  df-neg 9702
This theorem is referenced by:  supxrre  11394  supxrss  11399  ixxub  11425  limsupgord  13061  limsupgle  13066  prdsxmetlem  20068  ovollb2lem  21096  ovolunlem1  21105  ovoliunlem2  21111  ovolscalem1  21121  ovolicc1  21124  voliunlem2  21158  voliunlem3  21159  uniioovol  21185  uniioombllem3  21191  volsup2  21211  itg2leub  21338  itg2seq  21346  itg2mono  21357  itg2gt0  21364  itg2cn  21367  mdegleb  21661  radcnvlt1  22009  nmoubi  24317  nmopub  25457  nmfnleub  25474  prdsbnd  28833  rrnequiv  28875
  Copyright terms: Public domain W3C validator