MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  supxr2 Structured version   Unicode version

Theorem supxr2 11476
Description: The supremum of a set of extended reals. (Contributed by NM, 9-Apr-2006.)
Assertion
Ref Expression
supxr2  |-  ( ( ( A  C_  RR*  /\  B  e.  RR* )  /\  ( A. x  e.  A  x  <_  B  /\  A. x  e.  RR  (
x  <  B  ->  E. y  e.  A  x  <  y ) ) )  ->  sup ( A ,  RR* ,  <  )  =  B )
Distinct variable groups:    x, y, A    x, B, y

Proof of Theorem supxr2
StepHypRef Expression
1 ssel2 3436 . . . . . . 7  |-  ( ( A  C_  RR*  /\  x  e.  A )  ->  x  e.  RR* )
2 xrlenlt 9602 . . . . . . 7  |-  ( ( x  e.  RR*  /\  B  e.  RR* )  ->  (
x  <_  B  <->  -.  B  <  x ) )
31, 2sylan 469 . . . . . 6  |-  ( ( ( A  C_  RR*  /\  x  e.  A )  /\  B  e.  RR* )  ->  (
x  <_  B  <->  -.  B  <  x ) )
43an32s 805 . . . . 5  |-  ( ( ( A  C_  RR*  /\  B  e.  RR* )  /\  x  e.  A )  ->  (
x  <_  B  <->  -.  B  <  x ) )
54ralbidva 2839 . . . 4  |-  ( ( A  C_  RR*  /\  B  e.  RR* )  ->  ( A. x  e.  A  x  <_  B  <->  A. x  e.  A  -.  B  <  x ) )
65anbi1d 703 . . 3  |-  ( ( A  C_  RR*  /\  B  e.  RR* )  ->  (
( A. x  e.  A  x  <_  B  /\  A. x  e.  RR  ( x  <  B  ->  E. y  e.  A  x  <  y ) )  <-> 
( A. x  e.  A  -.  B  < 
x  /\  A. x  e.  RR  ( x  < 
B  ->  E. y  e.  A  x  <  y ) ) ) )
76biimpa 482 . 2  |-  ( ( ( A  C_  RR*  /\  B  e.  RR* )  /\  ( A. x  e.  A  x  <_  B  /\  A. x  e.  RR  (
x  <  B  ->  E. y  e.  A  x  <  y ) ) )  ->  ( A. x  e.  A  -.  B  <  x  /\  A. x  e.  RR  (
x  <  B  ->  E. y  e.  A  x  <  y ) ) )
8 supxr 11475 . 2  |-  ( ( ( A  C_  RR*  /\  B  e.  RR* )  /\  ( A. x  e.  A  -.  B  <  x  /\  A. x  e.  RR  (
x  <  B  ->  E. y  e.  A  x  <  y ) ) )  ->  sup ( A ,  RR* ,  <  )  =  B )
97, 8syldan 468 1  |-  ( ( ( A  C_  RR*  /\  B  e.  RR* )  /\  ( A. x  e.  A  x  <_  B  /\  A. x  e.  RR  (
x  <  B  ->  E. y  e.  A  x  <  y ) ) )  ->  sup ( A ,  RR* ,  <  )  =  B )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 367    = wceq 1405    e. wcel 1842   A.wral 2753   E.wrex 2754    C_ wss 3413   class class class wbr 4394   supcsup 7854   RRcr 9441   RR*cxr 9577    < clt 9578    <_ cle 9579
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1639  ax-4 1652  ax-5 1725  ax-6 1771  ax-7 1814  ax-8 1844  ax-9 1846  ax-10 1861  ax-11 1866  ax-12 1878  ax-13 2026  ax-ext 2380  ax-sep 4516  ax-nul 4524  ax-pow 4571  ax-pr 4629  ax-un 6530  ax-cnex 9498  ax-resscn 9499  ax-1cn 9500  ax-icn 9501  ax-addcl 9502  ax-addrcl 9503  ax-mulcl 9504  ax-mulrcl 9505  ax-mulcom 9506  ax-addass 9507  ax-mulass 9508  ax-distr 9509  ax-i2m1 9510  ax-1ne0 9511  ax-1rid 9512  ax-rnegex 9513  ax-rrecex 9514  ax-cnre 9515  ax-pre-lttri 9516  ax-pre-lttrn 9517  ax-pre-ltadd 9518  ax-pre-mulgt0 9519
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 975  df-3an 976  df-tru 1408  df-ex 1634  df-nf 1638  df-sb 1764  df-eu 2242  df-mo 2243  df-clab 2388  df-cleq 2394  df-clel 2397  df-nfc 2552  df-ne 2600  df-nel 2601  df-ral 2758  df-rex 2759  df-reu 2760  df-rmo 2761  df-rab 2762  df-v 3060  df-sbc 3277  df-csb 3373  df-dif 3416  df-un 3418  df-in 3420  df-ss 3427  df-nul 3738  df-if 3885  df-pw 3956  df-sn 3972  df-pr 3974  df-op 3978  df-uni 4191  df-br 4395  df-opab 4453  df-mpt 4454  df-id 4737  df-po 4743  df-so 4744  df-xp 4948  df-rel 4949  df-cnv 4950  df-co 4951  df-dm 4952  df-rn 4953  df-res 4954  df-ima 4955  df-iota 5489  df-fun 5527  df-fn 5528  df-f 5529  df-f1 5530  df-fo 5531  df-f1o 5532  df-fv 5533  df-riota 6196  df-ov 6237  df-oprab 6238  df-mpt2 6239  df-er 7268  df-en 7475  df-dom 7476  df-sdom 7477  df-sup 7855  df-pnf 9580  df-mnf 9581  df-xr 9582  df-ltxr 9583  df-le 9584  df-sub 9763  df-neg 9764
This theorem is referenced by:  nmopun  27226  branmfn  27317  pjnmopi  27360  xrofsup  27910  esumcst  28390  esumfsup  28397
  Copyright terms: Public domain W3C validator