MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  supsrlem Structured version   Unicode version

Theorem supsrlem 9270
Description: Lemma for supremum theorem. (Contributed by NM, 21-May-1996.) (Revised by Mario Carneiro, 15-Jun-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
supsrlem.1  |-  B  =  { w  |  ( C  +R  [ <. w ,  1P >. ]  ~R  )  e.  A }
supsrlem.2  |-  C  e. 
R.
Assertion
Ref Expression
supsrlem  |-  ( ( C  e.  A  /\  E. x  e.  R.  A. y  e.  A  y  <R  x )  ->  E. x  e.  R.  ( A. y  e.  A  -.  x  <R  y  /\  A. y  e.  R.  ( y  <R  x  ->  E. z  e.  A  y  <R  z ) ) )
Distinct variable groups:    x, y,
z, w, A    x, B, y, z, w    x, C, y, z, w

Proof of Theorem supsrlem
Dummy variables  v  u are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 supsrlem.2 . . . . . . 7  |-  C  e. 
R.
2 0idsr 9256 . . . . . . 7  |-  ( C  e.  R.  ->  ( C  +R  0R )  =  C )
31, 2mp1i 12 . . . . . 6  |-  ( ( C  e.  A  /\  E. x  e.  R.  A. y  e.  A  y  <R  x )  ->  ( C  +R  0R )  =  C )
4 simpl 457 . . . . . 6  |-  ( ( C  e.  A  /\  E. x  e.  R.  A. y  e.  A  y  <R  x )  ->  C  e.  A )
53, 4eqeltrd 2511 . . . . 5  |-  ( ( C  e.  A  /\  E. x  e.  R.  A. y  e.  A  y  <R  x )  ->  ( C  +R  0R )  e.  A )
6 1pr 9176 . . . . . . 7  |-  1P  e.  P.
76elexi 2976 . . . . . 6  |-  1P  e.  _V
8 opeq1 4052 . . . . . . . . . 10  |-  ( w  =  1P  ->  <. w ,  1P >.  =  <. 1P ,  1P >. )
9 eceq1 7129 . . . . . . . . . 10  |-  ( <.
w ,  1P >.  = 
<. 1P ,  1P >.  ->  [ <. w ,  1P >. ]  ~R  =  [ <. 1P ,  1P >. ]  ~R  )
108, 9syl 16 . . . . . . . . 9  |-  ( w  =  1P  ->  [ <. w ,  1P >. ]  ~R  =  [ <. 1P ,  1P >. ]  ~R  )
11 df-0r 9223 . . . . . . . . 9  |-  0R  =  [ <. 1P ,  1P >. ]  ~R
1210, 11syl6eqr 2487 . . . . . . . 8  |-  ( w  =  1P  ->  [ <. w ,  1P >. ]  ~R  =  0R )
1312oveq2d 6102 . . . . . . 7  |-  ( w  =  1P  ->  ( C  +R  [ <. w ,  1P >. ]  ~R  )  =  ( C  +R  0R ) )
1413eleq1d 2503 . . . . . 6  |-  ( w  =  1P  ->  (
( C  +R  [ <. w ,  1P >. ]  ~R  )  e.  A  <->  ( C  +R  0R )  e.  A ) )
15 supsrlem.1 . . . . . 6  |-  B  =  { w  |  ( C  +R  [ <. w ,  1P >. ]  ~R  )  e.  A }
167, 14, 15elab2 3102 . . . . 5  |-  ( 1P  e.  B  <->  ( C  +R  0R )  e.  A
)
175, 16sylibr 212 . . . 4  |-  ( ( C  e.  A  /\  E. x  e.  R.  A. y  e.  A  y  <R  x )  ->  1P  e.  B )
18 ne0i 3636 . . . 4  |-  ( 1P  e.  B  ->  B  =/=  (/) )
1917, 18syl 16 . . 3  |-  ( ( C  e.  A  /\  E. x  e.  R.  A. y  e.  A  y  <R  x )  ->  B  =/=  (/) )
20 breq1 4288 . . . . . . . 8  |-  ( y  =  C  ->  (
y  <R  x  <->  C  <R  x ) )
2120rspccv 3063 . . . . . . 7  |-  ( A. y  e.  A  y  <R  x  ->  ( C  e.  A  ->  C  <R  x ) )
22 0lt1sr 9254 . . . . . . . . . . . . 13  |-  0R  <R  1R
23 m1r 9241 . . . . . . . . . . . . . 14  |-  -1R  e.  R.
24 ltasr 9259 . . . . . . . . . . . . . 14  |-  ( -1R 
e.  R.  ->  ( 0R 
<R  1R  <->  ( -1R  +R  0R )  <R  ( -1R 
+R  1R ) ) )
2523, 24ax-mp 5 . . . . . . . . . . . . 13  |-  ( 0R 
<R  1R  <->  ( -1R  +R  0R )  <R  ( -1R 
+R  1R ) )
2622, 25mpbi 208 . . . . . . . . . . . 12  |-  ( -1R 
+R  0R )  <R 
( -1R  +R  1R )
27 0idsr 9256 . . . . . . . . . . . . 13  |-  ( -1R 
e.  R.  ->  ( -1R 
+R  0R )  =  -1R )
2823, 27ax-mp 5 . . . . . . . . . . . 12  |-  ( -1R 
+R  0R )  =  -1R
29 m1p1sr 9251 . . . . . . . . . . . 12  |-  ( -1R 
+R  1R )  =  0R
3026, 28, 293brtr3i 4312 . . . . . . . . . . 11  |-  -1R  <R  0R
31 ltasr 9259 . . . . . . . . . . . 12  |-  ( C  e.  R.  ->  ( -1R  <R  0R  <->  ( C  +R  -1R )  <R  ( C  +R  0R ) ) )
321, 31ax-mp 5 . . . . . . . . . . 11  |-  ( -1R 
<R  0R  <->  ( C  +R  -1R )  <R  ( C  +R  0R ) )
3330, 32mpbi 208 . . . . . . . . . 10  |-  ( C  +R  -1R )  <R 
( C  +R  0R )
341, 2ax-mp 5 . . . . . . . . . 10  |-  ( C  +R  0R )  =  C
3533, 34breqtri 4308 . . . . . . . . 9  |-  ( C  +R  -1R )  <R  C
36 ltsosr 9253 . . . . . . . . . 10  |-  <R  Or  R.
37 ltrelsr 9230 . . . . . . . . . 10  |-  <R  C_  ( R.  X.  R. )
3836, 37sotri 5218 . . . . . . . . 9  |-  ( ( ( C  +R  -1R )  <R  C  /\  C  <R  x )  ->  ( C  +R  -1R )  <R  x )
3935, 38mpan 670 . . . . . . . 8  |-  ( C 
<R  x  ->  ( C  +R  -1R )  <R  x )
401map2psrpr 9269 . . . . . . . 8  |-  ( ( C  +R  -1R )  <R  x  <->  E. v  e.  P.  ( C  +R  [ <. v ,  1P >. ]  ~R  )  =  x )
4139, 40sylib 196 . . . . . . 7  |-  ( C 
<R  x  ->  E. v  e.  P.  ( C  +R  [
<. v ,  1P >. ]  ~R  )  =  x )
4221, 41syl6 33 . . . . . 6  |-  ( A. y  e.  A  y  <R  x  ->  ( C  e.  A  ->  E. v  e.  P.  ( C  +R  [
<. v ,  1P >. ]  ~R  )  =  x ) )
43 breq2 4289 . . . . . . . . . 10  |-  ( ( C  +R  [ <. v ,  1P >. ]  ~R  )  =  x  ->  ( y  <R  ( C  +R  [ <. v ,  1P >. ]  ~R  )  <->  y  <R  x ) )
4443ralbidv 2729 . . . . . . . . 9  |-  ( ( C  +R  [ <. v ,  1P >. ]  ~R  )  =  x  ->  ( A. y  e.  A  y  <R  ( C  +R  [
<. v ,  1P >. ]  ~R  )  <->  A. y  e.  A  y  <R  x ) )
4515abeq2i 2544 . . . . . . . . . . 11  |-  ( w  e.  B  <->  ( C  +R  [ <. w ,  1P >. ]  ~R  )  e.  A )
46 breq1 4288 . . . . . . . . . . . . 13  |-  ( y  =  ( C  +R  [
<. w ,  1P >. ]  ~R  )  ->  (
y  <R  ( C  +R  [
<. v ,  1P >. ]  ~R  )  <->  ( C  +R  [ <. w ,  1P >. ]  ~R  )  <R 
( C  +R  [ <. v ,  1P >. ]  ~R  ) ) )
4746rspccv 3063 . . . . . . . . . . . 12  |-  ( A. y  e.  A  y  <R  ( C  +R  [ <. v ,  1P >. ]  ~R  )  ->  (
( C  +R  [ <. w ,  1P >. ]  ~R  )  e.  A  ->  ( C  +R  [ <. w ,  1P >. ]  ~R  )  <R  ( C  +R  [ <. v ,  1P >. ]  ~R  )
) )
481ltpsrpr 9268 . . . . . . . . . . . 12  |-  ( ( C  +R  [ <. w ,  1P >. ]  ~R  )  <R  ( C  +R  [
<. v ,  1P >. ]  ~R  )  <->  w  <P  v )
4947, 48syl6ib 226 . . . . . . . . . . 11  |-  ( A. y  e.  A  y  <R  ( C  +R  [ <. v ,  1P >. ]  ~R  )  ->  (
( C  +R  [ <. w ,  1P >. ]  ~R  )  e.  A  ->  w  <P  v )
)
5045, 49syl5bi 217 . . . . . . . . . 10  |-  ( A. y  e.  A  y  <R  ( C  +R  [ <. v ,  1P >. ]  ~R  )  ->  (
w  e.  B  ->  w  <P  v ) )
5150ralrimiv 2792 . . . . . . . . 9  |-  ( A. y  e.  A  y  <R  ( C  +R  [ <. v ,  1P >. ]  ~R  )  ->  A. w  e.  B  w  <P  v )
5244, 51syl6bir 229 . . . . . . . 8  |-  ( ( C  +R  [ <. v ,  1P >. ]  ~R  )  =  x  ->  ( A. y  e.  A  y  <R  x  ->  A. w  e.  B  w  <P  v ) )
5352com12 31 . . . . . . 7  |-  ( A. y  e.  A  y  <R  x  ->  ( ( C  +R  [ <. v ,  1P >. ]  ~R  )  =  x  ->  A. w  e.  B  w  <P  v ) )
5453reximdv 2821 . . . . . 6  |-  ( A. y  e.  A  y  <R  x  ->  ( E. v  e.  P.  ( C  +R  [ <. v ,  1P >. ]  ~R  )  =  x  ->  E. v  e.  P.  A. w  e.  B  w  <P  v
) )
5542, 54syld 44 . . . . 5  |-  ( A. y  e.  A  y  <R  x  ->  ( C  e.  A  ->  E. v  e.  P.  A. w  e.  B  w  <P  v
) )
5655rexlimivw 2831 . . . 4  |-  ( E. x  e.  R.  A. y  e.  A  y  <R  x  ->  ( C  e.  A  ->  E. v  e.  P.  A. w  e.  B  w  <P  v
) )
5756impcom 430 . . 3  |-  ( ( C  e.  A  /\  E. x  e.  R.  A. y  e.  A  y  <R  x )  ->  E. v  e.  P.  A. w  e.  B  w  <P  v
)
58 supexpr 9215 . . 3  |-  ( ( B  =/=  (/)  /\  E. v  e.  P.  A. w  e.  B  w  <P  v )  ->  E. v  e.  P.  ( A. w  e.  B  -.  v  <P  w  /\  A. w  e.  P.  ( w  <P  v  ->  E. u  e.  B  w  <P  u ) ) )
5919, 57, 58syl2anc 661 . 2  |-  ( ( C  e.  A  /\  E. x  e.  R.  A. y  e.  A  y  <R  x )  ->  E. v  e.  P.  ( A. w  e.  B  -.  v  <P  w  /\  A. w  e.  P.  ( w  <P  v  ->  E. u  e.  B  w  <P  u ) ) )
601mappsrpr 9267 . . . . . . 7  |-  ( ( C  +R  -1R )  <R  ( C  +R  [ <. v ,  1P >. ]  ~R  )  <->  v  e.  P. )
6137brel 4879 . . . . . . 7  |-  ( ( C  +R  -1R )  <R  ( C  +R  [ <. v ,  1P >. ]  ~R  )  ->  (
( C  +R  -1R )  e.  R.  /\  ( C  +R  [ <. v ,  1P >. ]  ~R  )  e.  R. ) )
6260, 61sylbir 213 . . . . . 6  |-  ( v  e.  P.  ->  (
( C  +R  -1R )  e.  R.  /\  ( C  +R  [ <. v ,  1P >. ]  ~R  )  e.  R. ) )
6362simprd 463 . . . . 5  |-  ( v  e.  P.  ->  ( C  +R  [ <. v ,  1P >. ]  ~R  )  e.  R. )
6463adantl 466 . . . 4  |-  ( ( ( C  e.  A  /\  E. x  e.  R.  A. y  e.  A  y 
<R  x )  /\  v  e.  P. )  ->  ( C  +R  [ <. v ,  1P >. ]  ~R  )  e.  R. )
6536, 37sotri 5218 . . . . . . . . . . . . . . 15  |-  ( ( ( C  +R  -1R )  <R  ( C  +R  [
<. v ,  1P >. ]  ~R  )  /\  ( C  +R  [ <. v ,  1P >. ]  ~R  )  <R  y )  ->  ( C  +R  -1R )  <R 
y )
6660, 65sylanbr 473 . . . . . . . . . . . . . 14  |-  ( ( v  e.  P.  /\  ( C  +R  [ <. v ,  1P >. ]  ~R  )  <R  y )  -> 
( C  +R  -1R )  <R  y )
671map2psrpr 9269 . . . . . . . . . . . . . 14  |-  ( ( C  +R  -1R )  <R  y  <->  E. w  e.  P.  ( C  +R  [ <. w ,  1P >. ]  ~R  )  =  y )
6866, 67sylib 196 . . . . . . . . . . . . 13  |-  ( ( v  e.  P.  /\  ( C  +R  [ <. v ,  1P >. ]  ~R  )  <R  y )  ->  E. w  e.  P.  ( C  +R  [ <. w ,  1P >. ]  ~R  )  =  y )
69 rexex 2769 . . . . . . . . . . . . 13  |-  ( E. w  e.  P.  ( C  +R  [ <. w ,  1P >. ]  ~R  )  =  y  ->  E. w
( C  +R  [ <. w ,  1P >. ]  ~R  )  =  y )
70 df-ral 2714 . . . . . . . . . . . . . . 15  |-  ( A. w  e.  B  -.  v  <P  w  <->  A. w
( w  e.  B  ->  -.  v  <P  w
) )
71 19.29 1650 . . . . . . . . . . . . . . . 16  |-  ( ( A. w ( w  e.  B  ->  -.  v  <P  w )  /\  E. w ( C  +R  [
<. w ,  1P >. ]  ~R  )  =  y )  ->  E. w
( ( w  e.  B  ->  -.  v  <P  w )  /\  ( C  +R  [ <. w ,  1P >. ]  ~R  )  =  y ) )
72 eleq1 2497 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( C  +R  [ <. w ,  1P >. ]  ~R  )  =  y  ->  ( ( C  +R  [ <. w ,  1P >. ]  ~R  )  e.  A  <->  y  e.  A ) )
7345, 72syl5bb 257 . . . . . . . . . . . . . . . . . . 19  |-  ( ( C  +R  [ <. w ,  1P >. ]  ~R  )  =  y  ->  ( w  e.  B  <->  y  e.  A ) )
741ltpsrpr 9268 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( C  +R  [ <. v ,  1P >. ]  ~R  )  <R  ( C  +R  [
<. w ,  1P >. ]  ~R  )  <->  v  <P  w )
75 breq2 4289 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( C  +R  [ <. w ,  1P >. ]  ~R  )  =  y  ->  ( ( C  +R  [ <. v ,  1P >. ]  ~R  )  <R  ( C  +R  [ <. w ,  1P >. ]  ~R  )  <->  ( C  +R  [ <. v ,  1P >. ]  ~R  )  <R  y ) )
7674, 75syl5bbr 259 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( C  +R  [ <. w ,  1P >. ]  ~R  )  =  y  ->  ( v  <P  w  <->  ( C  +R  [ <. v ,  1P >. ]  ~R  )  <R 
y ) )
7776notbid 294 . . . . . . . . . . . . . . . . . . 19  |-  ( ( C  +R  [ <. w ,  1P >. ]  ~R  )  =  y  ->  ( -.  v  <P  w  <->  -.  ( C  +R  [ <. v ,  1P >. ]  ~R  )  <R  y
) )
7873, 77imbi12d 320 . . . . . . . . . . . . . . . . . 18  |-  ( ( C  +R  [ <. w ,  1P >. ]  ~R  )  =  y  ->  ( ( w  e.  B  ->  -.  v  <P  w
)  <->  ( y  e.  A  ->  -.  ( C  +R  [ <. v ,  1P >. ]  ~R  )  <R  y ) ) )
7978biimpac 486 . . . . . . . . . . . . . . . . 17  |-  ( ( ( w  e.  B  ->  -.  v  <P  w
)  /\  ( C  +R  [ <. w ,  1P >. ]  ~R  )  =  y )  ->  (
y  e.  A  ->  -.  ( C  +R  [ <. v ,  1P >. ]  ~R  )  <R  y
) )
8079exlimiv 1688 . . . . . . . . . . . . . . . 16  |-  ( E. w ( ( w  e.  B  ->  -.  v  <P  w )  /\  ( C  +R  [ <. w ,  1P >. ]  ~R  )  =  y )  ->  ( y  e.  A  ->  -.  ( C  +R  [
<. v ,  1P >. ]  ~R  )  <R  y
) )
8171, 80syl 16 . . . . . . . . . . . . . . 15  |-  ( ( A. w ( w  e.  B  ->  -.  v  <P  w )  /\  E. w ( C  +R  [
<. w ,  1P >. ]  ~R  )  =  y )  ->  ( y  e.  A  ->  -.  ( C  +R  [ <. v ,  1P >. ]  ~R  )  <R  y ) )
8270, 81sylanb 472 . . . . . . . . . . . . . 14  |-  ( ( A. w  e.  B  -.  v  <P  w  /\  E. w ( C  +R  [
<. w ,  1P >. ]  ~R  )  =  y )  ->  ( y  e.  A  ->  -.  ( C  +R  [ <. v ,  1P >. ]  ~R  )  <R  y ) )
8382expcom 435 . . . . . . . . . . . . 13  |-  ( E. w ( C  +R  [
<. w ,  1P >. ]  ~R  )  =  y  ->  ( A. w  e.  B  -.  v  <P  w  ->  ( y  e.  A  ->  -.  ( C  +R  [ <. v ,  1P >. ]  ~R  )  <R  y ) ) )
8468, 69, 833syl 20 . . . . . . . . . . . 12  |-  ( ( v  e.  P.  /\  ( C  +R  [ <. v ,  1P >. ]  ~R  )  <R  y )  -> 
( A. w  e.  B  -.  v  <P  w  ->  ( y  e.  A  ->  -.  ( C  +R  [ <. v ,  1P >. ]  ~R  )  <R  y ) ) )
8584impd 431 . . . . . . . . . . 11  |-  ( ( v  e.  P.  /\  ( C  +R  [ <. v ,  1P >. ]  ~R  )  <R  y )  -> 
( ( A. w  e.  B  -.  v  <P  w  /\  y  e.  A )  ->  -.  ( C  +R  [ <. v ,  1P >. ]  ~R  )  <R  y ) )
8685impancom 440 . . . . . . . . . 10  |-  ( ( v  e.  P.  /\  ( A. w  e.  B  -.  v  <P  w  /\  y  e.  A )
)  ->  ( ( C  +R  [ <. v ,  1P >. ]  ~R  )  <R  y  ->  -.  ( C  +R  [ <. v ,  1P >. ]  ~R  )  <R  y ) )
8786pm2.01d 169 . . . . . . . . 9  |-  ( ( v  e.  P.  /\  ( A. w  e.  B  -.  v  <P  w  /\  y  e.  A )
)  ->  -.  ( C  +R  [ <. v ,  1P >. ]  ~R  )  <R  y )
8887expr 615 . . . . . . . 8  |-  ( ( v  e.  P.  /\  A. w  e.  B  -.  v  <P  w )  -> 
( y  e.  A  ->  -.  ( C  +R  [
<. v ,  1P >. ]  ~R  )  <R  y
) )
8988ralrimiv 2792 . . . . . . 7  |-  ( ( v  e.  P.  /\  A. w  e.  B  -.  v  <P  w )  ->  A. y  e.  A  -.  ( C  +R  [ <. v ,  1P >. ]  ~R  )  <R  y
)
9089ex 434 . . . . . 6  |-  ( v  e.  P.  ->  ( A. w  e.  B  -.  v  <P  w  ->  A. y  e.  A  -.  ( C  +R  [ <. v ,  1P >. ]  ~R  )  <R  y
) )
9190adantl 466 . . . . 5  |-  ( ( ( C  e.  A  /\  E. x  e.  R.  A. y  e.  A  y 
<R  x )  /\  v  e.  P. )  ->  ( A. w  e.  B  -.  v  <P  w  ->  A. y  e.  A  -.  ( C  +R  [ <. v ,  1P >. ]  ~R  )  <R  y
) )
92 r19.29 2851 . . . . . . . . . . . . . 14  |-  ( ( A. w  e.  P.  ( w  <P  v  ->  E. u  e.  B  w  <P  u )  /\  E. w  e.  P.  ( C  +R  [ <. w ,  1P >. ]  ~R  )  =  y )  ->  E. w  e.  P.  ( ( w  <P  v  ->  E. u  e.  B  w  <P  u )  /\  ( C  +R  [ <. w ,  1P >. ]  ~R  )  =  y )
)
93 breq1 4288 . . . . . . . . . . . . . . . . . . 19  |-  ( ( C  +R  [ <. w ,  1P >. ]  ~R  )  =  y  ->  ( ( C  +R  [ <. w ,  1P >. ]  ~R  )  <R  ( C  +R  [ <. v ,  1P >. ]  ~R  )  <->  y 
<R  ( C  +R  [ <. v ,  1P >. ]  ~R  ) ) )
9448, 93syl5bbr 259 . . . . . . . . . . . . . . . . . 18  |-  ( ( C  +R  [ <. w ,  1P >. ]  ~R  )  =  y  ->  ( w  <P  v  <->  y  <R  ( C  +R  [ <. v ,  1P >. ]  ~R  ) ) )
9594biimprd 223 . . . . . . . . . . . . . . . . 17  |-  ( ( C  +R  [ <. w ,  1P >. ]  ~R  )  =  y  ->  ( y  <R  ( C  +R  [ <. v ,  1P >. ]  ~R  )  ->  w  <P  v ) )
96 vex 2969 . . . . . . . . . . . . . . . . . . . . 21  |-  u  e. 
_V
97 opeq1 4052 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( w  =  u  ->  <. w ,  1P >.  =  <. u ,  1P >. )
98 eceq1 7129 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( <.
w ,  1P >.  = 
<. u ,  1P >.  ->  [ <. w ,  1P >. ]  ~R  =  [ <. u ,  1P >. ]  ~R  )
9997, 98syl 16 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( w  =  u  ->  [ <. w ,  1P >. ]  ~R  =  [ <. u ,  1P >. ]  ~R  )
10099oveq2d 6102 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( w  =  u  ->  ( C  +R  [ <. w ,  1P >. ]  ~R  )  =  ( C  +R  [
<. u ,  1P >. ]  ~R  ) )
101100eleq1d 2503 . . . . . . . . . . . . . . . . . . . . 21  |-  ( w  =  u  ->  (
( C  +R  [ <. w ,  1P >. ]  ~R  )  e.  A  <->  ( C  +R  [ <. u ,  1P >. ]  ~R  )  e.  A )
)
10296, 101, 15elab2 3102 . . . . . . . . . . . . . . . . . . . 20  |-  ( u  e.  B  <->  ( C  +R  [ <. u ,  1P >. ]  ~R  )  e.  A )
103 breq2 4289 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( z  =  ( C  +R  [
<. u ,  1P >. ]  ~R  )  ->  (
( C  +R  [ <. w ,  1P >. ]  ~R  )  <R  z  <->  ( C  +R  [ <. w ,  1P >. ]  ~R  )  <R  ( C  +R  [
<. u ,  1P >. ]  ~R  ) ) )
1041ltpsrpr 9268 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( C  +R  [ <. w ,  1P >. ]  ~R  )  <R  ( C  +R  [
<. u ,  1P >. ]  ~R  )  <->  w  <P  u )
105103, 104syl6bb 261 . . . . . . . . . . . . . . . . . . . . 21  |-  ( z  =  ( C  +R  [
<. u ,  1P >. ]  ~R  )  ->  (
( C  +R  [ <. w ,  1P >. ]  ~R  )  <R  z  <->  w 
<P  u ) )
106105rspcev 3066 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( C  +R  [ <. u ,  1P >. ]  ~R  )  e.  A  /\  w  <P  u )  ->  E. z  e.  A  ( C  +R  [ <. w ,  1P >. ]  ~R  )  <R  z )
107102, 106sylanb 472 . . . . . . . . . . . . . . . . . . 19  |-  ( ( u  e.  B  /\  w  <P  u )  ->  E. z  e.  A  ( C  +R  [ <. w ,  1P >. ]  ~R  )  <R  z )
108107rexlimiva 2830 . . . . . . . . . . . . . . . . . 18  |-  ( E. u  e.  B  w 
<P  u  ->  E. z  e.  A  ( C  +R  [ <. w ,  1P >. ]  ~R  )  <R 
z )
109 breq1 4288 . . . . . . . . . . . . . . . . . . 19  |-  ( ( C  +R  [ <. w ,  1P >. ]  ~R  )  =  y  ->  ( ( C  +R  [ <. w ,  1P >. ]  ~R  )  <R  z  <->  y 
<R  z ) )
110109rexbidv 2730 . . . . . . . . . . . . . . . . . 18  |-  ( ( C  +R  [ <. w ,  1P >. ]  ~R  )  =  y  ->  ( E. z  e.  A  ( C  +R  [ <. w ,  1P >. ]  ~R  )  <R  z  <->  E. z  e.  A  y  <R  z ) )
111108, 110syl5ib 219 . . . . . . . . . . . . . . . . 17  |-  ( ( C  +R  [ <. w ,  1P >. ]  ~R  )  =  y  ->  ( E. u  e.  B  w  <P  u  ->  E. z  e.  A  y  <R  z ) )
11295, 111imim12d 74 . . . . . . . . . . . . . . . 16  |-  ( ( C  +R  [ <. w ,  1P >. ]  ~R  )  =  y  ->  ( ( w  <P  v  ->  E. u  e.  B  w  <P  u )  -> 
( y  <R  ( C  +R  [ <. v ,  1P >. ]  ~R  )  ->  E. z  e.  A  y  <R  z ) ) )
113112impcom 430 . . . . . . . . . . . . . . 15  |-  ( ( ( w  <P  v  ->  E. u  e.  B  w  <P  u )  /\  ( C  +R  [ <. w ,  1P >. ]  ~R  )  =  y )  ->  ( y  <R  ( C  +R  [ <. v ,  1P >. ]  ~R  )  ->  E. z  e.  A  y  <R  z ) )
114113rexlimivw 2831 . . . . . . . . . . . . . 14  |-  ( E. w  e.  P.  (
( w  <P  v  ->  E. u  e.  B  w  <P  u )  /\  ( C  +R  [ <. w ,  1P >. ]  ~R  )  =  y )  ->  ( y  <R  ( C  +R  [ <. v ,  1P >. ]  ~R  )  ->  E. z  e.  A  y  <R  z ) )
11592, 114syl 16 . . . . . . . . . . . . 13  |-  ( ( A. w  e.  P.  ( w  <P  v  ->  E. u  e.  B  w  <P  u )  /\  E. w  e.  P.  ( C  +R  [ <. w ,  1P >. ]  ~R  )  =  y )  -> 
( y  <R  ( C  +R  [ <. v ,  1P >. ]  ~R  )  ->  E. z  e.  A  y  <R  z ) )
11667, 115sylan2b 475 . . . . . . . . . . . 12  |-  ( ( A. w  e.  P.  ( w  <P  v  ->  E. u  e.  B  w  <P  u )  /\  ( C  +R  -1R )  <R  y )  ->  (
y  <R  ( C  +R  [
<. v ,  1P >. ]  ~R  )  ->  E. z  e.  A  y  <R  z ) )
117116ex 434 . . . . . . . . . . 11  |-  ( A. w  e.  P.  (
w  <P  v  ->  E. u  e.  B  w  <P  u )  ->  ( ( C  +R  -1R )  <R 
y  ->  ( y  <R  ( C  +R  [ <. v ,  1P >. ]  ~R  )  ->  E. z  e.  A  y  <R  z ) ) )
118117adantl 466 . . . . . . . . . 10  |-  ( ( ( C  e.  A  /\  v  e.  P. )  /\  A. w  e. 
P.  ( w  <P  v  ->  E. u  e.  B  w  <P  u ) )  ->  ( ( C  +R  -1R )  <R 
y  ->  ( y  <R  ( C  +R  [ <. v ,  1P >. ]  ~R  )  ->  E. z  e.  A  y  <R  z ) ) )
119118a1dd 46 . . . . . . . . 9  |-  ( ( ( C  e.  A  /\  v  e.  P. )  /\  A. w  e. 
P.  ( w  <P  v  ->  E. u  e.  B  w  <P  u ) )  ->  ( ( C  +R  -1R )  <R 
y  ->  ( y  e.  R.  ->  ( y  <R  ( C  +R  [ <. v ,  1P >. ]  ~R  )  ->  E. z  e.  A  y  <R  z ) ) ) )
12036, 37sotri2 5220 . . . . . . . . . . . . 13  |-  ( ( y  e.  R.  /\  -.  ( C  +R  -1R )  <R  y  /\  ( C  +R  -1R )  <R  C )  ->  y  <R  C )
12135, 120mp3an3 1303 . . . . . . . . . . . 12  |-  ( ( y  e.  R.  /\  -.  ( C  +R  -1R )  <R  y )  -> 
y  <R  C )
122 breq2 4289 . . . . . . . . . . . . . . 15  |-  ( z  =  C  ->  (
y  <R  z  <->  y  <R  C ) )
123122rspcev 3066 . . . . . . . . . . . . . 14  |-  ( ( C  e.  A  /\  y  <R  C )  ->  E. z  e.  A  y  <R  z )
124123ex 434 . . . . . . . . . . . . 13  |-  ( C  e.  A  ->  (
y  <R  C  ->  E. z  e.  A  y  <R  z ) )
125124a1dd 46 . . . . . . . . . . . 12  |-  ( C  e.  A  ->  (
y  <R  C  ->  (
y  <R  ( C  +R  [
<. v ,  1P >. ]  ~R  )  ->  E. z  e.  A  y  <R  z ) ) )
126121, 125syl5 32 . . . . . . . . . . 11  |-  ( C  e.  A  ->  (
( y  e.  R.  /\ 
-.  ( C  +R  -1R )  <R  y )  ->  ( y  <R 
( C  +R  [ <. v ,  1P >. ]  ~R  )  ->  E. z  e.  A  y  <R  z ) ) )
127126expcomd 438 . . . . . . . . . 10  |-  ( C  e.  A  ->  ( -.  ( C  +R  -1R )  <R  y  ->  (
y  e.  R.  ->  ( y  <R  ( C  +R  [ <. v ,  1P >. ]  ~R  )  ->  E. z  e.  A  y  <R  z ) ) ) )
128127ad2antrr 725 . . . . . . . . 9  |-  ( ( ( C  e.  A  /\  v  e.  P. )  /\  A. w  e. 
P.  ( w  <P  v  ->  E. u  e.  B  w  <P  u ) )  ->  ( -.  ( C  +R  -1R )  <R 
y  ->  ( y  e.  R.  ->  ( y  <R  ( C  +R  [ <. v ,  1P >. ]  ~R  )  ->  E. z  e.  A  y  <R  z ) ) ) )
129119, 128pm2.61d 158 . . . . . . . 8  |-  ( ( ( C  e.  A  /\  v  e.  P. )  /\  A. w  e. 
P.  ( w  <P  v  ->  E. u  e.  B  w  <P  u ) )  ->  ( y  e. 
R.  ->  ( y  <R 
( C  +R  [ <. v ,  1P >. ]  ~R  )  ->  E. z  e.  A  y  <R  z ) ) )
130129ralrimiv 2792 . . . . . . 7  |-  ( ( ( C  e.  A  /\  v  e.  P. )  /\  A. w  e. 
P.  ( w  <P  v  ->  E. u  e.  B  w  <P  u ) )  ->  A. y  e.  R.  ( y  <R  ( C  +R  [ <. v ,  1P >. ]  ~R  )  ->  E. z  e.  A  y  <R  z ) )
131130ex 434 . . . . . 6  |-  ( ( C  e.  A  /\  v  e.  P. )  ->  ( A. w  e. 
P.  ( w  <P  v  ->  E. u  e.  B  w  <P  u )  ->  A. y  e.  R.  ( y  <R  ( C  +R  [ <. v ,  1P >. ]  ~R  )  ->  E. z  e.  A  y  <R  z ) ) )
132131adantlr 714 . . . . 5  |-  ( ( ( C  e.  A  /\  E. x  e.  R.  A. y  e.  A  y 
<R  x )  /\  v  e.  P. )  ->  ( A. w  e.  P.  ( w  <P  v  ->  E. u  e.  B  w  <P  u )  ->  A. y  e.  R.  ( y  <R  ( C  +R  [ <. v ,  1P >. ]  ~R  )  ->  E. z  e.  A  y  <R  z ) ) )
13391, 132anim12d 563 . . . 4  |-  ( ( ( C  e.  A  /\  E. x  e.  R.  A. y  e.  A  y 
<R  x )  /\  v  e.  P. )  ->  (
( A. w  e.  B  -.  v  <P  w  /\  A. w  e. 
P.  ( w  <P  v  ->  E. u  e.  B  w  <P  u ) )  ->  ( A. y  e.  A  -.  ( C  +R  [ <. v ,  1P >. ]  ~R  )  <R  y  /\  A. y  e.  R.  ( y  <R 
( C  +R  [ <. v ,  1P >. ]  ~R  )  ->  E. z  e.  A  y  <R  z ) ) ) )
134 breq1 4288 . . . . . . . 8  |-  ( x  =  ( C  +R  [
<. v ,  1P >. ]  ~R  )  ->  (
x  <R  y  <->  ( C  +R  [ <. v ,  1P >. ]  ~R  )  <R 
y ) )
135134notbid 294 . . . . . . 7  |-  ( x  =  ( C  +R  [
<. v ,  1P >. ]  ~R  )  ->  ( -.  x  <R  y  <->  -.  ( C  +R  [ <. v ,  1P >. ]  ~R  )  <R  y ) )
136135ralbidv 2729 . . . . . 6  |-  ( x  =  ( C  +R  [
<. v ,  1P >. ]  ~R  )  ->  ( A. y  e.  A  -.  x  <R  y  <->  A. y  e.  A  -.  ( C  +R  [ <. v ,  1P >. ]  ~R  )  <R  y ) )
137 breq2 4289 . . . . . . . 8  |-  ( x  =  ( C  +R  [
<. v ,  1P >. ]  ~R  )  ->  (
y  <R  x  <->  y  <R  ( C  +R  [ <. v ,  1P >. ]  ~R  ) ) )
138137imbi1d 317 . . . . . . 7  |-  ( x  =  ( C  +R  [
<. v ,  1P >. ]  ~R  )  ->  (
( y  <R  x  ->  E. z  e.  A  y  <R  z )  <->  ( y  <R  ( C  +R  [ <. v ,  1P >. ]  ~R  )  ->  E. z  e.  A  y  <R  z ) ) )
139138ralbidv 2729 . . . . . 6  |-  ( x  =  ( C  +R  [
<. v ,  1P >. ]  ~R  )  ->  ( A. y  e.  R.  ( y  <R  x  ->  E. z  e.  A  y  <R  z )  <->  A. y  e.  R.  ( y  <R 
( C  +R  [ <. v ,  1P >. ]  ~R  )  ->  E. z  e.  A  y  <R  z ) ) )
140136, 139anbi12d 710 . . . . 5  |-  ( x  =  ( C  +R  [
<. v ,  1P >. ]  ~R  )  ->  (
( A. y  e.  A  -.  x  <R  y  /\  A. y  e. 
R.  ( y  <R  x  ->  E. z  e.  A  y  <R  z ) )  <-> 
( A. y  e.  A  -.  ( C  +R  [ <. v ,  1P >. ]  ~R  )  <R  y  /\  A. y  e.  R.  ( y  <R 
( C  +R  [ <. v ,  1P >. ]  ~R  )  ->  E. z  e.  A  y  <R  z ) ) ) )
141140rspcev 3066 . . . 4  |-  ( ( ( C  +R  [ <. v ,  1P >. ]  ~R  )  e.  R.  /\  ( A. y  e.  A  -.  ( C  +R  [ <. v ,  1P >. ]  ~R  )  <R  y  /\  A. y  e.  R.  ( y  <R 
( C  +R  [ <. v ,  1P >. ]  ~R  )  ->  E. z  e.  A  y  <R  z ) ) )  ->  E. x  e.  R.  ( A. y  e.  A  -.  x  <R  y  /\  A. y  e.  R.  (
y  <R  x  ->  E. z  e.  A  y  <R  z ) ) )
14264, 133, 141syl6an 545 . . 3  |-  ( ( ( C  e.  A  /\  E. x  e.  R.  A. y  e.  A  y 
<R  x )  /\  v  e.  P. )  ->  (
( A. w  e.  B  -.  v  <P  w  /\  A. w  e. 
P.  ( w  <P  v  ->  E. u  e.  B  w  <P  u ) )  ->  E. x  e.  R.  ( A. y  e.  A  -.  x  <R  y  /\  A. y  e.  R.  (
y  <R  x  ->  E. z  e.  A  y  <R  z ) ) ) )
143142rexlimdva 2835 . 2  |-  ( ( C  e.  A  /\  E. x  e.  R.  A. y  e.  A  y  <R  x )  ->  ( E. v  e.  P.  ( A. w  e.  B  -.  v  <P  w  /\  A. w  e.  P.  (
w  <P  v  ->  E. u  e.  B  w  <P  u ) )  ->  E. x  e.  R.  ( A. y  e.  A  -.  x  <R  y  /\  A. y  e.  R.  ( y  <R  x  ->  E. z  e.  A  y  <R  z ) ) ) )
14459, 143mpd 15 1  |-  ( ( C  e.  A  /\  E. x  e.  R.  A. y  e.  A  y  <R  x )  ->  E. x  e.  R.  ( A. y  e.  A  -.  x  <R  y  /\  A. y  e.  R.  ( y  <R  x  ->  E. z  e.  A  y  <R  z ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369   A.wal 1367    = wceq 1369   E.wex 1586    e. wcel 1756   {cab 2423    =/= wne 2600   A.wral 2709   E.wrex 2710   (/)c0 3630   <.cop 3876   class class class wbr 4285  (class class class)co 6086   [cec 7091   P.cnp 9018   1Pc1p 9019    <P cltp 9022    ~R cer 9025   R.cnr 9026   0Rc0r 9027   1Rc1r 9028   -1Rcm1r 9029    +R cplr 9030    <R cltr 9032
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2418  ax-sep 4406  ax-nul 4414  ax-pow 4463  ax-pr 4524  ax-un 6367  ax-inf2 7839
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2256  df-mo 2257  df-clab 2424  df-cleq 2430  df-clel 2433  df-nfc 2562  df-ne 2602  df-ral 2714  df-rex 2715  df-reu 2716  df-rmo 2717  df-rab 2718  df-v 2968  df-sbc 3180  df-csb 3282  df-dif 3324  df-un 3326  df-in 3328  df-ss 3335  df-pss 3337  df-nul 3631  df-if 3785  df-pw 3855  df-sn 3871  df-pr 3873  df-tp 3875  df-op 3877  df-uni 4085  df-int 4122  df-iun 4166  df-br 4286  df-opab 4344  df-mpt 4345  df-tr 4379  df-eprel 4624  df-id 4628  df-po 4633  df-so 4634  df-fr 4671  df-we 4673  df-ord 4714  df-on 4715  df-lim 4716  df-suc 4717  df-xp 4838  df-rel 4839  df-cnv 4840  df-co 4841  df-dm 4842  df-rn 4843  df-res 4844  df-ima 4845  df-iota 5374  df-fun 5413  df-fn 5414  df-f 5415  df-f1 5416  df-fo 5417  df-f1o 5418  df-fv 5419  df-ov 6089  df-oprab 6090  df-mpt2 6091  df-om 6472  df-1st 6572  df-2nd 6573  df-recs 6824  df-rdg 6858  df-1o 6912  df-oadd 6916  df-omul 6917  df-er 7093  df-ec 7095  df-qs 7099  df-ni 9033  df-pli 9034  df-mi 9035  df-lti 9036  df-plpq 9069  df-mpq 9070  df-ltpq 9071  df-enq 9072  df-nq 9073  df-erq 9074  df-plq 9075  df-mq 9076  df-1nq 9077  df-rq 9078  df-ltnq 9079  df-np 9142  df-1p 9143  df-plp 9144  df-mp 9145  df-ltp 9146  df-plpr 9216  df-mpr 9217  df-enr 9218  df-nr 9219  df-plr 9220  df-mr 9221  df-ltr 9222  df-0r 9223  df-1r 9224  df-m1r 9225
This theorem is referenced by:  supsr  9271
  Copyright terms: Public domain W3C validator