MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  supsrlem Structured version   Unicode version

Theorem supsrlem 9477
Description: Lemma for supremum theorem. (Contributed by NM, 21-May-1996.) (Revised by Mario Carneiro, 15-Jun-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
supsrlem.1  |-  B  =  { w  |  ( C  +R  [ <. w ,  1P >. ]  ~R  )  e.  A }
supsrlem.2  |-  C  e. 
R.
Assertion
Ref Expression
supsrlem  |-  ( ( C  e.  A  /\  E. x  e.  R.  A. y  e.  A  y  <R  x )  ->  E. x  e.  R.  ( A. y  e.  A  -.  x  <R  y  /\  A. y  e.  R.  ( y  <R  x  ->  E. z  e.  A  y  <R  z ) ) )
Distinct variable groups:    x, y,
z, w, A    x, B, y, z, w    x, C, y, z, w

Proof of Theorem supsrlem
Dummy variables  v  u are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 supsrlem.2 . . . . . . 7  |-  C  e. 
R.
2 0idsr 9463 . . . . . . 7  |-  ( C  e.  R.  ->  ( C  +R  0R )  =  C )
31, 2mp1i 12 . . . . . 6  |-  ( ( C  e.  A  /\  E. x  e.  R.  A. y  e.  A  y  <R  x )  ->  ( C  +R  0R )  =  C )
4 simpl 457 . . . . . 6  |-  ( ( C  e.  A  /\  E. x  e.  R.  A. y  e.  A  y  <R  x )  ->  C  e.  A )
53, 4eqeltrd 2548 . . . . 5  |-  ( ( C  e.  A  /\  E. x  e.  R.  A. y  e.  A  y  <R  x )  ->  ( C  +R  0R )  e.  A )
6 1pr 9382 . . . . . . 7  |-  1P  e.  P.
76elexi 3116 . . . . . 6  |-  1P  e.  _V
8 opeq1 4206 . . . . . . . . . 10  |-  ( w  =  1P  ->  <. w ,  1P >.  =  <. 1P ,  1P >. )
98eceq1d 7338 . . . . . . . . 9  |-  ( w  =  1P  ->  [ <. w ,  1P >. ]  ~R  =  [ <. 1P ,  1P >. ]  ~R  )
10 df-0r 9427 . . . . . . . . 9  |-  0R  =  [ <. 1P ,  1P >. ]  ~R
119, 10syl6eqr 2519 . . . . . . . 8  |-  ( w  =  1P  ->  [ <. w ,  1P >. ]  ~R  =  0R )
1211oveq2d 6291 . . . . . . 7  |-  ( w  =  1P  ->  ( C  +R  [ <. w ,  1P >. ]  ~R  )  =  ( C  +R  0R ) )
1312eleq1d 2529 . . . . . 6  |-  ( w  =  1P  ->  (
( C  +R  [ <. w ,  1P >. ]  ~R  )  e.  A  <->  ( C  +R  0R )  e.  A ) )
14 supsrlem.1 . . . . . 6  |-  B  =  { w  |  ( C  +R  [ <. w ,  1P >. ]  ~R  )  e.  A }
157, 13, 14elab2 3246 . . . . 5  |-  ( 1P  e.  B  <->  ( C  +R  0R )  e.  A
)
165, 15sylibr 212 . . . 4  |-  ( ( C  e.  A  /\  E. x  e.  R.  A. y  e.  A  y  <R  x )  ->  1P  e.  B )
17 ne0i 3784 . . . 4  |-  ( 1P  e.  B  ->  B  =/=  (/) )
1816, 17syl 16 . . 3  |-  ( ( C  e.  A  /\  E. x  e.  R.  A. y  e.  A  y  <R  x )  ->  B  =/=  (/) )
19 breq1 4443 . . . . . . . 8  |-  ( y  =  C  ->  (
y  <R  x  <->  C  <R  x ) )
2019rspccv 3204 . . . . . . 7  |-  ( A. y  e.  A  y  <R  x  ->  ( C  e.  A  ->  C  <R  x ) )
21 0lt1sr 9461 . . . . . . . . . . . . 13  |-  0R  <R  1R
22 m1r 9448 . . . . . . . . . . . . . 14  |-  -1R  e.  R.
23 ltasr 9466 . . . . . . . . . . . . . 14  |-  ( -1R 
e.  R.  ->  ( 0R 
<R  1R  <->  ( -1R  +R  0R )  <R  ( -1R 
+R  1R ) ) )
2422, 23ax-mp 5 . . . . . . . . . . . . 13  |-  ( 0R 
<R  1R  <->  ( -1R  +R  0R )  <R  ( -1R 
+R  1R ) )
2521, 24mpbi 208 . . . . . . . . . . . 12  |-  ( -1R 
+R  0R )  <R 
( -1R  +R  1R )
26 0idsr 9463 . . . . . . . . . . . . 13  |-  ( -1R 
e.  R.  ->  ( -1R 
+R  0R )  =  -1R )
2722, 26ax-mp 5 . . . . . . . . . . . 12  |-  ( -1R 
+R  0R )  =  -1R
28 m1p1sr 9458 . . . . . . . . . . . 12  |-  ( -1R 
+R  1R )  =  0R
2925, 27, 283brtr3i 4467 . . . . . . . . . . 11  |-  -1R  <R  0R
30 ltasr 9466 . . . . . . . . . . . 12  |-  ( C  e.  R.  ->  ( -1R  <R  0R  <->  ( C  +R  -1R )  <R  ( C  +R  0R ) ) )
311, 30ax-mp 5 . . . . . . . . . . 11  |-  ( -1R 
<R  0R  <->  ( C  +R  -1R )  <R  ( C  +R  0R ) )
3229, 31mpbi 208 . . . . . . . . . 10  |-  ( C  +R  -1R )  <R 
( C  +R  0R )
331, 2ax-mp 5 . . . . . . . . . 10  |-  ( C  +R  0R )  =  C
3432, 33breqtri 4463 . . . . . . . . 9  |-  ( C  +R  -1R )  <R  C
35 ltsosr 9460 . . . . . . . . . 10  |-  <R  Or  R.
36 ltrelsr 9434 . . . . . . . . . 10  |-  <R  C_  ( R.  X.  R. )
3735, 36sotri 5385 . . . . . . . . 9  |-  ( ( ( C  +R  -1R )  <R  C  /\  C  <R  x )  ->  ( C  +R  -1R )  <R  x )
3834, 37mpan 670 . . . . . . . 8  |-  ( C 
<R  x  ->  ( C  +R  -1R )  <R  x )
391map2psrpr 9476 . . . . . . . 8  |-  ( ( C  +R  -1R )  <R  x  <->  E. v  e.  P.  ( C  +R  [ <. v ,  1P >. ]  ~R  )  =  x )
4038, 39sylib 196 . . . . . . 7  |-  ( C 
<R  x  ->  E. v  e.  P.  ( C  +R  [
<. v ,  1P >. ]  ~R  )  =  x )
4120, 40syl6 33 . . . . . 6  |-  ( A. y  e.  A  y  <R  x  ->  ( C  e.  A  ->  E. v  e.  P.  ( C  +R  [
<. v ,  1P >. ]  ~R  )  =  x ) )
42 breq2 4444 . . . . . . . . . 10  |-  ( ( C  +R  [ <. v ,  1P >. ]  ~R  )  =  x  ->  ( y  <R  ( C  +R  [ <. v ,  1P >. ]  ~R  )  <->  y  <R  x ) )
4342ralbidv 2896 . . . . . . . . 9  |-  ( ( C  +R  [ <. v ,  1P >. ]  ~R  )  =  x  ->  ( A. y  e.  A  y  <R  ( C  +R  [
<. v ,  1P >. ]  ~R  )  <->  A. y  e.  A  y  <R  x ) )
4414abeq2i 2587 . . . . . . . . . . 11  |-  ( w  e.  B  <->  ( C  +R  [ <. w ,  1P >. ]  ~R  )  e.  A )
45 breq1 4443 . . . . . . . . . . . . 13  |-  ( y  =  ( C  +R  [
<. w ,  1P >. ]  ~R  )  ->  (
y  <R  ( C  +R  [
<. v ,  1P >. ]  ~R  )  <->  ( C  +R  [ <. w ,  1P >. ]  ~R  )  <R 
( C  +R  [ <. v ,  1P >. ]  ~R  ) ) )
4645rspccv 3204 . . . . . . . . . . . 12  |-  ( A. y  e.  A  y  <R  ( C  +R  [ <. v ,  1P >. ]  ~R  )  ->  (
( C  +R  [ <. w ,  1P >. ]  ~R  )  e.  A  ->  ( C  +R  [ <. w ,  1P >. ]  ~R  )  <R  ( C  +R  [ <. v ,  1P >. ]  ~R  )
) )
471ltpsrpr 9475 . . . . . . . . . . . 12  |-  ( ( C  +R  [ <. w ,  1P >. ]  ~R  )  <R  ( C  +R  [
<. v ,  1P >. ]  ~R  )  <->  w  <P  v )
4846, 47syl6ib 226 . . . . . . . . . . 11  |-  ( A. y  e.  A  y  <R  ( C  +R  [ <. v ,  1P >. ]  ~R  )  ->  (
( C  +R  [ <. w ,  1P >. ]  ~R  )  e.  A  ->  w  <P  v )
)
4944, 48syl5bi 217 . . . . . . . . . 10  |-  ( A. y  e.  A  y  <R  ( C  +R  [ <. v ,  1P >. ]  ~R  )  ->  (
w  e.  B  ->  w  <P  v ) )
5049ralrimiv 2869 . . . . . . . . 9  |-  ( A. y  e.  A  y  <R  ( C  +R  [ <. v ,  1P >. ]  ~R  )  ->  A. w  e.  B  w  <P  v )
5143, 50syl6bir 229 . . . . . . . 8  |-  ( ( C  +R  [ <. v ,  1P >. ]  ~R  )  =  x  ->  ( A. y  e.  A  y  <R  x  ->  A. w  e.  B  w  <P  v ) )
5251com12 31 . . . . . . 7  |-  ( A. y  e.  A  y  <R  x  ->  ( ( C  +R  [ <. v ,  1P >. ]  ~R  )  =  x  ->  A. w  e.  B  w  <P  v ) )
5352reximdv 2930 . . . . . 6  |-  ( A. y  e.  A  y  <R  x  ->  ( E. v  e.  P.  ( C  +R  [ <. v ,  1P >. ]  ~R  )  =  x  ->  E. v  e.  P.  A. w  e.  B  w  <P  v
) )
5441, 53syld 44 . . . . 5  |-  ( A. y  e.  A  y  <R  x  ->  ( C  e.  A  ->  E. v  e.  P.  A. w  e.  B  w  <P  v
) )
5554rexlimivw 2945 . . . 4  |-  ( E. x  e.  R.  A. y  e.  A  y  <R  x  ->  ( C  e.  A  ->  E. v  e.  P.  A. w  e.  B  w  <P  v
) )
5655impcom 430 . . 3  |-  ( ( C  e.  A  /\  E. x  e.  R.  A. y  e.  A  y  <R  x )  ->  E. v  e.  P.  A. w  e.  B  w  <P  v
)
57 supexpr 9421 . . 3  |-  ( ( B  =/=  (/)  /\  E. v  e.  P.  A. w  e.  B  w  <P  v )  ->  E. v  e.  P.  ( A. w  e.  B  -.  v  <P  w  /\  A. w  e.  P.  ( w  <P  v  ->  E. u  e.  B  w  <P  u ) ) )
5818, 56, 57syl2anc 661 . 2  |-  ( ( C  e.  A  /\  E. x  e.  R.  A. y  e.  A  y  <R  x )  ->  E. v  e.  P.  ( A. w  e.  B  -.  v  <P  w  /\  A. w  e.  P.  ( w  <P  v  ->  E. u  e.  B  w  <P  u ) ) )
591mappsrpr 9474 . . . . . . 7  |-  ( ( C  +R  -1R )  <R  ( C  +R  [ <. v ,  1P >. ]  ~R  )  <->  v  e.  P. )
6036brel 5040 . . . . . . 7  |-  ( ( C  +R  -1R )  <R  ( C  +R  [ <. v ,  1P >. ]  ~R  )  ->  (
( C  +R  -1R )  e.  R.  /\  ( C  +R  [ <. v ,  1P >. ]  ~R  )  e.  R. ) )
6159, 60sylbir 213 . . . . . 6  |-  ( v  e.  P.  ->  (
( C  +R  -1R )  e.  R.  /\  ( C  +R  [ <. v ,  1P >. ]  ~R  )  e.  R. ) )
6261simprd 463 . . . . 5  |-  ( v  e.  P.  ->  ( C  +R  [ <. v ,  1P >. ]  ~R  )  e.  R. )
6362adantl 466 . . . 4  |-  ( ( ( C  e.  A  /\  E. x  e.  R.  A. y  e.  A  y 
<R  x )  /\  v  e.  P. )  ->  ( C  +R  [ <. v ,  1P >. ]  ~R  )  e.  R. )
6435, 36sotri 5385 . . . . . . . . . . . . . . 15  |-  ( ( ( C  +R  -1R )  <R  ( C  +R  [
<. v ,  1P >. ]  ~R  )  /\  ( C  +R  [ <. v ,  1P >. ]  ~R  )  <R  y )  ->  ( C  +R  -1R )  <R 
y )
6559, 64sylanbr 473 . . . . . . . . . . . . . 14  |-  ( ( v  e.  P.  /\  ( C  +R  [ <. v ,  1P >. ]  ~R  )  <R  y )  -> 
( C  +R  -1R )  <R  y )
661map2psrpr 9476 . . . . . . . . . . . . . 14  |-  ( ( C  +R  -1R )  <R  y  <->  E. w  e.  P.  ( C  +R  [ <. w ,  1P >. ]  ~R  )  =  y )
6765, 66sylib 196 . . . . . . . . . . . . 13  |-  ( ( v  e.  P.  /\  ( C  +R  [ <. v ,  1P >. ]  ~R  )  <R  y )  ->  E. w  e.  P.  ( C  +R  [ <. w ,  1P >. ]  ~R  )  =  y )
68 rexex 2914 . . . . . . . . . . . . 13  |-  ( E. w  e.  P.  ( C  +R  [ <. w ,  1P >. ]  ~R  )  =  y  ->  E. w
( C  +R  [ <. w ,  1P >. ]  ~R  )  =  y )
69 df-ral 2812 . . . . . . . . . . . . . . 15  |-  ( A. w  e.  B  -.  v  <P  w  <->  A. w
( w  e.  B  ->  -.  v  <P  w
) )
70 19.29 1655 . . . . . . . . . . . . . . . 16  |-  ( ( A. w ( w  e.  B  ->  -.  v  <P  w )  /\  E. w ( C  +R  [
<. w ,  1P >. ]  ~R  )  =  y )  ->  E. w
( ( w  e.  B  ->  -.  v  <P  w )  /\  ( C  +R  [ <. w ,  1P >. ]  ~R  )  =  y ) )
71 eleq1 2532 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( C  +R  [ <. w ,  1P >. ]  ~R  )  =  y  ->  ( ( C  +R  [ <. w ,  1P >. ]  ~R  )  e.  A  <->  y  e.  A ) )
7244, 71syl5bb 257 . . . . . . . . . . . . . . . . . . 19  |-  ( ( C  +R  [ <. w ,  1P >. ]  ~R  )  =  y  ->  ( w  e.  B  <->  y  e.  A ) )
731ltpsrpr 9475 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( C  +R  [ <. v ,  1P >. ]  ~R  )  <R  ( C  +R  [
<. w ,  1P >. ]  ~R  )  <->  v  <P  w )
74 breq2 4444 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( C  +R  [ <. w ,  1P >. ]  ~R  )  =  y  ->  ( ( C  +R  [ <. v ,  1P >. ]  ~R  )  <R  ( C  +R  [ <. w ,  1P >. ]  ~R  )  <->  ( C  +R  [ <. v ,  1P >. ]  ~R  )  <R  y ) )
7573, 74syl5bbr 259 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( C  +R  [ <. w ,  1P >. ]  ~R  )  =  y  ->  ( v  <P  w  <->  ( C  +R  [ <. v ,  1P >. ]  ~R  )  <R 
y ) )
7675notbid 294 . . . . . . . . . . . . . . . . . . 19  |-  ( ( C  +R  [ <. w ,  1P >. ]  ~R  )  =  y  ->  ( -.  v  <P  w  <->  -.  ( C  +R  [ <. v ,  1P >. ]  ~R  )  <R  y
) )
7772, 76imbi12d 320 . . . . . . . . . . . . . . . . . 18  |-  ( ( C  +R  [ <. w ,  1P >. ]  ~R  )  =  y  ->  ( ( w  e.  B  ->  -.  v  <P  w
)  <->  ( y  e.  A  ->  -.  ( C  +R  [ <. v ,  1P >. ]  ~R  )  <R  y ) ) )
7877biimpac 486 . . . . . . . . . . . . . . . . 17  |-  ( ( ( w  e.  B  ->  -.  v  <P  w
)  /\  ( C  +R  [ <. w ,  1P >. ]  ~R  )  =  y )  ->  (
y  e.  A  ->  -.  ( C  +R  [ <. v ,  1P >. ]  ~R  )  <R  y
) )
7978exlimiv 1693 . . . . . . . . . . . . . . . 16  |-  ( E. w ( ( w  e.  B  ->  -.  v  <P  w )  /\  ( C  +R  [ <. w ,  1P >. ]  ~R  )  =  y )  ->  ( y  e.  A  ->  -.  ( C  +R  [
<. v ,  1P >. ]  ~R  )  <R  y
) )
8070, 79syl 16 . . . . . . . . . . . . . . 15  |-  ( ( A. w ( w  e.  B  ->  -.  v  <P  w )  /\  E. w ( C  +R  [
<. w ,  1P >. ]  ~R  )  =  y )  ->  ( y  e.  A  ->  -.  ( C  +R  [ <. v ,  1P >. ]  ~R  )  <R  y ) )
8169, 80sylanb 472 . . . . . . . . . . . . . 14  |-  ( ( A. w  e.  B  -.  v  <P  w  /\  E. w ( C  +R  [
<. w ,  1P >. ]  ~R  )  =  y )  ->  ( y  e.  A  ->  -.  ( C  +R  [ <. v ,  1P >. ]  ~R  )  <R  y ) )
8281expcom 435 . . . . . . . . . . . . 13  |-  ( E. w ( C  +R  [
<. w ,  1P >. ]  ~R  )  =  y  ->  ( A. w  e.  B  -.  v  <P  w  ->  ( y  e.  A  ->  -.  ( C  +R  [ <. v ,  1P >. ]  ~R  )  <R  y ) ) )
8367, 68, 823syl 20 . . . . . . . . . . . 12  |-  ( ( v  e.  P.  /\  ( C  +R  [ <. v ,  1P >. ]  ~R  )  <R  y )  -> 
( A. w  e.  B  -.  v  <P  w  ->  ( y  e.  A  ->  -.  ( C  +R  [ <. v ,  1P >. ]  ~R  )  <R  y ) ) )
8483impd 431 . . . . . . . . . . 11  |-  ( ( v  e.  P.  /\  ( C  +R  [ <. v ,  1P >. ]  ~R  )  <R  y )  -> 
( ( A. w  e.  B  -.  v  <P  w  /\  y  e.  A )  ->  -.  ( C  +R  [ <. v ,  1P >. ]  ~R  )  <R  y ) )
8584impancom 440 . . . . . . . . . 10  |-  ( ( v  e.  P.  /\  ( A. w  e.  B  -.  v  <P  w  /\  y  e.  A )
)  ->  ( ( C  +R  [ <. v ,  1P >. ]  ~R  )  <R  y  ->  -.  ( C  +R  [ <. v ,  1P >. ]  ~R  )  <R  y ) )
8685pm2.01d 169 . . . . . . . . 9  |-  ( ( v  e.  P.  /\  ( A. w  e.  B  -.  v  <P  w  /\  y  e.  A )
)  ->  -.  ( C  +R  [ <. v ,  1P >. ]  ~R  )  <R  y )
8786expr 615 . . . . . . . 8  |-  ( ( v  e.  P.  /\  A. w  e.  B  -.  v  <P  w )  -> 
( y  e.  A  ->  -.  ( C  +R  [
<. v ,  1P >. ]  ~R  )  <R  y
) )
8887ralrimiv 2869 . . . . . . 7  |-  ( ( v  e.  P.  /\  A. w  e.  B  -.  v  <P  w )  ->  A. y  e.  A  -.  ( C  +R  [ <. v ,  1P >. ]  ~R  )  <R  y
)
8988ex 434 . . . . . 6  |-  ( v  e.  P.  ->  ( A. w  e.  B  -.  v  <P  w  ->  A. y  e.  A  -.  ( C  +R  [ <. v ,  1P >. ]  ~R  )  <R  y
) )
9089adantl 466 . . . . 5  |-  ( ( ( C  e.  A  /\  E. x  e.  R.  A. y  e.  A  y 
<R  x )  /\  v  e.  P. )  ->  ( A. w  e.  B  -.  v  <P  w  ->  A. y  e.  A  -.  ( C  +R  [ <. v ,  1P >. ]  ~R  )  <R  y
) )
91 r19.29 2990 . . . . . . . . . . . . . 14  |-  ( ( A. w  e.  P.  ( w  <P  v  ->  E. u  e.  B  w  <P  u )  /\  E. w  e.  P.  ( C  +R  [ <. w ,  1P >. ]  ~R  )  =  y )  ->  E. w  e.  P.  ( ( w  <P  v  ->  E. u  e.  B  w  <P  u )  /\  ( C  +R  [ <. w ,  1P >. ]  ~R  )  =  y )
)
92 breq1 4443 . . . . . . . . . . . . . . . . . . 19  |-  ( ( C  +R  [ <. w ,  1P >. ]  ~R  )  =  y  ->  ( ( C  +R  [ <. w ,  1P >. ]  ~R  )  <R  ( C  +R  [ <. v ,  1P >. ]  ~R  )  <->  y 
<R  ( C  +R  [ <. v ,  1P >. ]  ~R  ) ) )
9347, 92syl5bbr 259 . . . . . . . . . . . . . . . . . 18  |-  ( ( C  +R  [ <. w ,  1P >. ]  ~R  )  =  y  ->  ( w  <P  v  <->  y  <R  ( C  +R  [ <. v ,  1P >. ]  ~R  ) ) )
9493biimprd 223 . . . . . . . . . . . . . . . . 17  |-  ( ( C  +R  [ <. w ,  1P >. ]  ~R  )  =  y  ->  ( y  <R  ( C  +R  [ <. v ,  1P >. ]  ~R  )  ->  w  <P  v ) )
95 vex 3109 . . . . . . . . . . . . . . . . . . . . 21  |-  u  e. 
_V
96 opeq1 4206 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( w  =  u  ->  <. w ,  1P >.  =  <. u ,  1P >. )
9796eceq1d 7338 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( w  =  u  ->  [ <. w ,  1P >. ]  ~R  =  [ <. u ,  1P >. ]  ~R  )
9897oveq2d 6291 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( w  =  u  ->  ( C  +R  [ <. w ,  1P >. ]  ~R  )  =  ( C  +R  [
<. u ,  1P >. ]  ~R  ) )
9998eleq1d 2529 . . . . . . . . . . . . . . . . . . . . 21  |-  ( w  =  u  ->  (
( C  +R  [ <. w ,  1P >. ]  ~R  )  e.  A  <->  ( C  +R  [ <. u ,  1P >. ]  ~R  )  e.  A )
)
10095, 99, 14elab2 3246 . . . . . . . . . . . . . . . . . . . 20  |-  ( u  e.  B  <->  ( C  +R  [ <. u ,  1P >. ]  ~R  )  e.  A )
101 breq2 4444 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( z  =  ( C  +R  [
<. u ,  1P >. ]  ~R  )  ->  (
( C  +R  [ <. w ,  1P >. ]  ~R  )  <R  z  <->  ( C  +R  [ <. w ,  1P >. ]  ~R  )  <R  ( C  +R  [
<. u ,  1P >. ]  ~R  ) ) )
1021ltpsrpr 9475 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( C  +R  [ <. w ,  1P >. ]  ~R  )  <R  ( C  +R  [
<. u ,  1P >. ]  ~R  )  <->  w  <P  u )
103101, 102syl6bb 261 . . . . . . . . . . . . . . . . . . . . 21  |-  ( z  =  ( C  +R  [
<. u ,  1P >. ]  ~R  )  ->  (
( C  +R  [ <. w ,  1P >. ]  ~R  )  <R  z  <->  w 
<P  u ) )
104103rspcev 3207 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( C  +R  [ <. u ,  1P >. ]  ~R  )  e.  A  /\  w  <P  u )  ->  E. z  e.  A  ( C  +R  [ <. w ,  1P >. ]  ~R  )  <R  z )
105100, 104sylanb 472 . . . . . . . . . . . . . . . . . . 19  |-  ( ( u  e.  B  /\  w  <P  u )  ->  E. z  e.  A  ( C  +R  [ <. w ,  1P >. ]  ~R  )  <R  z )
106105rexlimiva 2944 . . . . . . . . . . . . . . . . . 18  |-  ( E. u  e.  B  w 
<P  u  ->  E. z  e.  A  ( C  +R  [ <. w ,  1P >. ]  ~R  )  <R 
z )
107 breq1 4443 . . . . . . . . . . . . . . . . . . 19  |-  ( ( C  +R  [ <. w ,  1P >. ]  ~R  )  =  y  ->  ( ( C  +R  [ <. w ,  1P >. ]  ~R  )  <R  z  <->  y 
<R  z ) )
108107rexbidv 2966 . . . . . . . . . . . . . . . . . 18  |-  ( ( C  +R  [ <. w ,  1P >. ]  ~R  )  =  y  ->  ( E. z  e.  A  ( C  +R  [ <. w ,  1P >. ]  ~R  )  <R  z  <->  E. z  e.  A  y  <R  z ) )
109106, 108syl5ib 219 . . . . . . . . . . . . . . . . 17  |-  ( ( C  +R  [ <. w ,  1P >. ]  ~R  )  =  y  ->  ( E. u  e.  B  w  <P  u  ->  E. z  e.  A  y  <R  z ) )
11094, 109imim12d 74 . . . . . . . . . . . . . . . 16  |-  ( ( C  +R  [ <. w ,  1P >. ]  ~R  )  =  y  ->  ( ( w  <P  v  ->  E. u  e.  B  w  <P  u )  -> 
( y  <R  ( C  +R  [ <. v ,  1P >. ]  ~R  )  ->  E. z  e.  A  y  <R  z ) ) )
111110impcom 430 . . . . . . . . . . . . . . 15  |-  ( ( ( w  <P  v  ->  E. u  e.  B  w  <P  u )  /\  ( C  +R  [ <. w ,  1P >. ]  ~R  )  =  y )  ->  ( y  <R  ( C  +R  [ <. v ,  1P >. ]  ~R  )  ->  E. z  e.  A  y  <R  z ) )
112111rexlimivw 2945 . . . . . . . . . . . . . 14  |-  ( E. w  e.  P.  (
( w  <P  v  ->  E. u  e.  B  w  <P  u )  /\  ( C  +R  [ <. w ,  1P >. ]  ~R  )  =  y )  ->  ( y  <R  ( C  +R  [ <. v ,  1P >. ]  ~R  )  ->  E. z  e.  A  y  <R  z ) )
11391, 112syl 16 . . . . . . . . . . . . 13  |-  ( ( A. w  e.  P.  ( w  <P  v  ->  E. u  e.  B  w  <P  u )  /\  E. w  e.  P.  ( C  +R  [ <. w ,  1P >. ]  ~R  )  =  y )  -> 
( y  <R  ( C  +R  [ <. v ,  1P >. ]  ~R  )  ->  E. z  e.  A  y  <R  z ) )
11466, 113sylan2b 475 . . . . . . . . . . . 12  |-  ( ( A. w  e.  P.  ( w  <P  v  ->  E. u  e.  B  w  <P  u )  /\  ( C  +R  -1R )  <R  y )  ->  (
y  <R  ( C  +R  [
<. v ,  1P >. ]  ~R  )  ->  E. z  e.  A  y  <R  z ) )
115114ex 434 . . . . . . . . . . 11  |-  ( A. w  e.  P.  (
w  <P  v  ->  E. u  e.  B  w  <P  u )  ->  ( ( C  +R  -1R )  <R 
y  ->  ( y  <R  ( C  +R  [ <. v ,  1P >. ]  ~R  )  ->  E. z  e.  A  y  <R  z ) ) )
116115adantl 466 . . . . . . . . . 10  |-  ( ( ( C  e.  A  /\  v  e.  P. )  /\  A. w  e. 
P.  ( w  <P  v  ->  E. u  e.  B  w  <P  u ) )  ->  ( ( C  +R  -1R )  <R 
y  ->  ( y  <R  ( C  +R  [ <. v ,  1P >. ]  ~R  )  ->  E. z  e.  A  y  <R  z ) ) )
117116a1dd 46 . . . . . . . . 9  |-  ( ( ( C  e.  A  /\  v  e.  P. )  /\  A. w  e. 
P.  ( w  <P  v  ->  E. u  e.  B  w  <P  u ) )  ->  ( ( C  +R  -1R )  <R 
y  ->  ( y  e.  R.  ->  ( y  <R  ( C  +R  [ <. v ,  1P >. ]  ~R  )  ->  E. z  e.  A  y  <R  z ) ) ) )
11835, 36sotri2 5387 . . . . . . . . . . . . 13  |-  ( ( y  e.  R.  /\  -.  ( C  +R  -1R )  <R  y  /\  ( C  +R  -1R )  <R  C )  ->  y  <R  C )
11934, 118mp3an3 1308 . . . . . . . . . . . 12  |-  ( ( y  e.  R.  /\  -.  ( C  +R  -1R )  <R  y )  -> 
y  <R  C )
120 breq2 4444 . . . . . . . . . . . . . . 15  |-  ( z  =  C  ->  (
y  <R  z  <->  y  <R  C ) )
121120rspcev 3207 . . . . . . . . . . . . . 14  |-  ( ( C  e.  A  /\  y  <R  C )  ->  E. z  e.  A  y  <R  z )
122121ex 434 . . . . . . . . . . . . 13  |-  ( C  e.  A  ->  (
y  <R  C  ->  E. z  e.  A  y  <R  z ) )
123122a1dd 46 . . . . . . . . . . . 12  |-  ( C  e.  A  ->  (
y  <R  C  ->  (
y  <R  ( C  +R  [
<. v ,  1P >. ]  ~R  )  ->  E. z  e.  A  y  <R  z ) ) )
124119, 123syl5 32 . . . . . . . . . . 11  |-  ( C  e.  A  ->  (
( y  e.  R.  /\ 
-.  ( C  +R  -1R )  <R  y )  ->  ( y  <R 
( C  +R  [ <. v ,  1P >. ]  ~R  )  ->  E. z  e.  A  y  <R  z ) ) )
125124expcomd 438 . . . . . . . . . 10  |-  ( C  e.  A  ->  ( -.  ( C  +R  -1R )  <R  y  ->  (
y  e.  R.  ->  ( y  <R  ( C  +R  [ <. v ,  1P >. ]  ~R  )  ->  E. z  e.  A  y  <R  z ) ) ) )
126125ad2antrr 725 . . . . . . . . 9  |-  ( ( ( C  e.  A  /\  v  e.  P. )  /\  A. w  e. 
P.  ( w  <P  v  ->  E. u  e.  B  w  <P  u ) )  ->  ( -.  ( C  +R  -1R )  <R 
y  ->  ( y  e.  R.  ->  ( y  <R  ( C  +R  [ <. v ,  1P >. ]  ~R  )  ->  E. z  e.  A  y  <R  z ) ) ) )
127117, 126pm2.61d 158 . . . . . . . 8  |-  ( ( ( C  e.  A  /\  v  e.  P. )  /\  A. w  e. 
P.  ( w  <P  v  ->  E. u  e.  B  w  <P  u ) )  ->  ( y  e. 
R.  ->  ( y  <R 
( C  +R  [ <. v ,  1P >. ]  ~R  )  ->  E. z  e.  A  y  <R  z ) ) )
128127ralrimiv 2869 . . . . . . 7  |-  ( ( ( C  e.  A  /\  v  e.  P. )  /\  A. w  e. 
P.  ( w  <P  v  ->  E. u  e.  B  w  <P  u ) )  ->  A. y  e.  R.  ( y  <R  ( C  +R  [ <. v ,  1P >. ]  ~R  )  ->  E. z  e.  A  y  <R  z ) )
129128ex 434 . . . . . 6  |-  ( ( C  e.  A  /\  v  e.  P. )  ->  ( A. w  e. 
P.  ( w  <P  v  ->  E. u  e.  B  w  <P  u )  ->  A. y  e.  R.  ( y  <R  ( C  +R  [ <. v ,  1P >. ]  ~R  )  ->  E. z  e.  A  y  <R  z ) ) )
130129adantlr 714 . . . . 5  |-  ( ( ( C  e.  A  /\  E. x  e.  R.  A. y  e.  A  y 
<R  x )  /\  v  e.  P. )  ->  ( A. w  e.  P.  ( w  <P  v  ->  E. u  e.  B  w  <P  u )  ->  A. y  e.  R.  ( y  <R  ( C  +R  [ <. v ,  1P >. ]  ~R  )  ->  E. z  e.  A  y  <R  z ) ) )
13190, 130anim12d 563 . . . 4  |-  ( ( ( C  e.  A  /\  E. x  e.  R.  A. y  e.  A  y 
<R  x )  /\  v  e.  P. )  ->  (
( A. w  e.  B  -.  v  <P  w  /\  A. w  e. 
P.  ( w  <P  v  ->  E. u  e.  B  w  <P  u ) )  ->  ( A. y  e.  A  -.  ( C  +R  [ <. v ,  1P >. ]  ~R  )  <R  y  /\  A. y  e.  R.  ( y  <R 
( C  +R  [ <. v ,  1P >. ]  ~R  )  ->  E. z  e.  A  y  <R  z ) ) ) )
132 breq1 4443 . . . . . . . 8  |-  ( x  =  ( C  +R  [
<. v ,  1P >. ]  ~R  )  ->  (
x  <R  y  <->  ( C  +R  [ <. v ,  1P >. ]  ~R  )  <R 
y ) )
133132notbid 294 . . . . . . 7  |-  ( x  =  ( C  +R  [
<. v ,  1P >. ]  ~R  )  ->  ( -.  x  <R  y  <->  -.  ( C  +R  [ <. v ,  1P >. ]  ~R  )  <R  y ) )
134133ralbidv 2896 . . . . . 6  |-  ( x  =  ( C  +R  [
<. v ,  1P >. ]  ~R  )  ->  ( A. y  e.  A  -.  x  <R  y  <->  A. y  e.  A  -.  ( C  +R  [ <. v ,  1P >. ]  ~R  )  <R  y ) )
135 breq2 4444 . . . . . . . 8  |-  ( x  =  ( C  +R  [
<. v ,  1P >. ]  ~R  )  ->  (
y  <R  x  <->  y  <R  ( C  +R  [ <. v ,  1P >. ]  ~R  ) ) )
136135imbi1d 317 . . . . . . 7  |-  ( x  =  ( C  +R  [
<. v ,  1P >. ]  ~R  )  ->  (
( y  <R  x  ->  E. z  e.  A  y  <R  z )  <->  ( y  <R  ( C  +R  [ <. v ,  1P >. ]  ~R  )  ->  E. z  e.  A  y  <R  z ) ) )
137136ralbidv 2896 . . . . . 6  |-  ( x  =  ( C  +R  [
<. v ,  1P >. ]  ~R  )  ->  ( A. y  e.  R.  ( y  <R  x  ->  E. z  e.  A  y  <R  z )  <->  A. y  e.  R.  ( y  <R 
( C  +R  [ <. v ,  1P >. ]  ~R  )  ->  E. z  e.  A  y  <R  z ) ) )
138134, 137anbi12d 710 . . . . 5  |-  ( x  =  ( C  +R  [
<. v ,  1P >. ]  ~R  )  ->  (
( A. y  e.  A  -.  x  <R  y  /\  A. y  e. 
R.  ( y  <R  x  ->  E. z  e.  A  y  <R  z ) )  <-> 
( A. y  e.  A  -.  ( C  +R  [ <. v ,  1P >. ]  ~R  )  <R  y  /\  A. y  e.  R.  ( y  <R 
( C  +R  [ <. v ,  1P >. ]  ~R  )  ->  E. z  e.  A  y  <R  z ) ) ) )
139138rspcev 3207 . . . 4  |-  ( ( ( C  +R  [ <. v ,  1P >. ]  ~R  )  e.  R.  /\  ( A. y  e.  A  -.  ( C  +R  [ <. v ,  1P >. ]  ~R  )  <R  y  /\  A. y  e.  R.  ( y  <R 
( C  +R  [ <. v ,  1P >. ]  ~R  )  ->  E. z  e.  A  y  <R  z ) ) )  ->  E. x  e.  R.  ( A. y  e.  A  -.  x  <R  y  /\  A. y  e.  R.  (
y  <R  x  ->  E. z  e.  A  y  <R  z ) ) )
14063, 131, 139syl6an 545 . . 3  |-  ( ( ( C  e.  A  /\  E. x  e.  R.  A. y  e.  A  y 
<R  x )  /\  v  e.  P. )  ->  (
( A. w  e.  B  -.  v  <P  w  /\  A. w  e. 
P.  ( w  <P  v  ->  E. u  e.  B  w  <P  u ) )  ->  E. x  e.  R.  ( A. y  e.  A  -.  x  <R  y  /\  A. y  e.  R.  (
y  <R  x  ->  E. z  e.  A  y  <R  z ) ) ) )
141140rexlimdva 2948 . 2  |-  ( ( C  e.  A  /\  E. x  e.  R.  A. y  e.  A  y  <R  x )  ->  ( E. v  e.  P.  ( A. w  e.  B  -.  v  <P  w  /\  A. w  e.  P.  (
w  <P  v  ->  E. u  e.  B  w  <P  u ) )  ->  E. x  e.  R.  ( A. y  e.  A  -.  x  <R  y  /\  A. y  e.  R.  ( y  <R  x  ->  E. z  e.  A  y  <R  z ) ) ) )
14258, 141mpd 15 1  |-  ( ( C  e.  A  /\  E. x  e.  R.  A. y  e.  A  y  <R  x )  ->  E. x  e.  R.  ( A. y  e.  A  -.  x  <R  y  /\  A. y  e.  R.  ( y  <R  x  ->  E. z  e.  A  y  <R  z ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369   A.wal 1372    = wceq 1374   E.wex 1591    e. wcel 1762   {cab 2445    =/= wne 2655   A.wral 2807   E.wrex 2808   (/)c0 3778   <.cop 4026   class class class wbr 4440  (class class class)co 6275   [cec 7299   P.cnp 9226   1Pc1p 9227    <P cltp 9230    ~R cer 9231   R.cnr 9232   0Rc0r 9233   1Rc1r 9234   -1Rcm1r 9235    +R cplr 9236    <R cltr 9238
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1714  ax-7 1734  ax-8 1764  ax-9 1766  ax-10 1781  ax-11 1786  ax-12 1798  ax-13 1961  ax-ext 2438  ax-sep 4561  ax-nul 4569  ax-pow 4618  ax-pr 4679  ax-un 6567  ax-inf2 8047
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 969  df-3an 970  df-tru 1377  df-ex 1592  df-nf 1595  df-sb 1707  df-eu 2272  df-mo 2273  df-clab 2446  df-cleq 2452  df-clel 2455  df-nfc 2610  df-ne 2657  df-ral 2812  df-rex 2813  df-reu 2814  df-rmo 2815  df-rab 2816  df-v 3108  df-sbc 3325  df-csb 3429  df-dif 3472  df-un 3474  df-in 3476  df-ss 3483  df-pss 3485  df-nul 3779  df-if 3933  df-pw 4005  df-sn 4021  df-pr 4023  df-tp 4025  df-op 4027  df-uni 4239  df-int 4276  df-iun 4320  df-br 4441  df-opab 4499  df-mpt 4500  df-tr 4534  df-eprel 4784  df-id 4788  df-po 4793  df-so 4794  df-fr 4831  df-we 4833  df-ord 4874  df-on 4875  df-lim 4876  df-suc 4877  df-xp 4998  df-rel 4999  df-cnv 5000  df-co 5001  df-dm 5002  df-rn 5003  df-res 5004  df-ima 5005  df-iota 5542  df-fun 5581  df-fn 5582  df-f 5583  df-f1 5584  df-fo 5585  df-f1o 5586  df-fv 5587  df-ov 6278  df-oprab 6279  df-mpt2 6280  df-om 6672  df-1st 6774  df-2nd 6775  df-recs 7032  df-rdg 7066  df-1o 7120  df-oadd 7124  df-omul 7125  df-er 7301  df-ec 7303  df-qs 7307  df-ni 9239  df-pli 9240  df-mi 9241  df-lti 9242  df-plpq 9275  df-mpq 9276  df-ltpq 9277  df-enq 9278  df-nq 9279  df-erq 9280  df-plq 9281  df-mq 9282  df-1nq 9283  df-rq 9284  df-ltnq 9285  df-np 9348  df-1p 9349  df-plp 9350  df-mp 9351  df-ltp 9352  df-enr 9422  df-nr 9423  df-plr 9424  df-mr 9425  df-ltr 9426  df-0r 9427  df-1r 9428  df-m1r 9429
This theorem is referenced by:  supsr  9478
  Copyright terms: Public domain W3C validator