MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  supsr Structured version   Unicode version

Theorem supsr 9492
Description: A nonempty, bounded set of signed reals has a supremum. (Contributed by NM, 21-May-1996.) (Revised by Mario Carneiro, 15-Jun-2013.) (New usage is discouraged.)
Assertion
Ref Expression
supsr  |-  ( ( A  =/=  (/)  /\  E. x  e.  R.  A. y  e.  A  y  <R  x )  ->  E. x  e.  R.  ( A. y  e.  A  -.  x  <R  y  /\  A. y  e.  R.  ( y  <R  x  ->  E. z  e.  A  y  <R  z ) ) )
Distinct variable group:    x, y, z, A

Proof of Theorem supsr
Dummy variables  w  v  u are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 n0 3780 . . 3  |-  ( A  =/=  (/)  <->  E. u  u  e.  A )
2 ltrelsr 9448 . . . . . . . . . . . . 13  |-  <R  C_  ( R.  X.  R. )
32brel 5038 . . . . . . . . . . . 12  |-  ( y 
<R  x  ->  ( y  e.  R.  /\  x  e.  R. ) )
43simpld 459 . . . . . . . . . . 11  |-  ( y 
<R  x  ->  y  e. 
R. )
54ralimi 2836 . . . . . . . . . 10  |-  ( A. y  e.  A  y  <R  x  ->  A. y  e.  A  y  e.  R. )
6 dfss3 3479 . . . . . . . . . 10  |-  ( A 
C_  R.  <->  A. y  e.  A  y  e.  R. )
75, 6sylibr 212 . . . . . . . . 9  |-  ( A. y  e.  A  y  <R  x  ->  A  C_  R. )
87sseld 3488 . . . . . . . 8  |-  ( A. y  e.  A  y  <R  x  ->  ( u  e.  A  ->  u  e. 
R. ) )
98rexlimivw 2932 . . . . . . 7  |-  ( E. x  e.  R.  A. y  e.  A  y  <R  x  ->  ( u  e.  A  ->  u  e. 
R. ) )
109impcom 430 . . . . . 6  |-  ( ( u  e.  A  /\  E. x  e.  R.  A. y  e.  A  y  <R  x )  ->  u  e.  R. )
11 eleq1 2515 . . . . . . . . 9  |-  ( u  =  if ( u  e.  R. ,  u ,  1R )  ->  (
u  e.  A  <->  if (
u  e.  R. ,  u ,  1R )  e.  A ) )
1211anbi1d 704 . . . . . . . 8  |-  ( u  =  if ( u  e.  R. ,  u ,  1R )  ->  (
( u  e.  A  /\  E. x  e.  R.  A. y  e.  A  y 
<R  x )  <->  ( if ( u  e.  R. ,  u ,  1R )  e.  A  /\  E. x  e.  R.  A. y  e.  A  y  <R  x
) ) )
1312imbi1d 317 . . . . . . 7  |-  ( u  =  if ( u  e.  R. ,  u ,  1R )  ->  (
( ( u  e.  A  /\  E. x  e.  R.  A. y  e.  A  y  <R  x
)  ->  E. x  e.  R.  ( A. y  e.  A  -.  x  <R  y  /\  A. y  e.  R.  ( y  <R  x  ->  E. z  e.  A  y  <R  z ) ) )  <->  ( ( if ( u  e.  R. ,  u ,  1R )  e.  A  /\  E. x  e.  R.  A. y  e.  A  y  <R  x
)  ->  E. x  e.  R.  ( A. y  e.  A  -.  x  <R  y  /\  A. y  e.  R.  ( y  <R  x  ->  E. z  e.  A  y  <R  z ) ) ) ) )
14 opeq1 4202 . . . . . . . . . . . 12  |-  ( v  =  w  ->  <. v ,  1P >.  =  <. w ,  1P >. )
1514eceq1d 7350 . . . . . . . . . . 11  |-  ( v  =  w  ->  [ <. v ,  1P >. ]  ~R  =  [ <. w ,  1P >. ]  ~R  )
1615oveq2d 6297 . . . . . . . . . 10  |-  ( v  =  w  ->  ( if ( u  e.  R. ,  u ,  1R )  +R  [ <. v ,  1P >. ]  ~R  )  =  ( if ( u  e.  R. ,  u ,  1R )  +R  [ <. w ,  1P >. ]  ~R  ) )
1716eleq1d 2512 . . . . . . . . 9  |-  ( v  =  w  ->  (
( if ( u  e.  R. ,  u ,  1R )  +R  [ <. v ,  1P >. ]  ~R  )  e.  A  <->  ( if ( u  e. 
R. ,  u ,  1R )  +R  [ <. w ,  1P >. ]  ~R  )  e.  A
) )
1817cbvabv 2586 . . . . . . . 8  |-  { v  |  ( if ( u  e.  R. ,  u ,  1R )  +R  [ <. v ,  1P >. ]  ~R  )  e.  A }  =  {
w  |  ( if ( u  e.  R. ,  u ,  1R )  +R  [ <. w ,  1P >. ]  ~R  )  e.  A }
19 1sr 9461 . . . . . . . . 9  |-  1R  e.  R.
2019elimel 3989 . . . . . . . 8  |-  if ( u  e.  R. ,  u ,  1R )  e.  R.
2118, 20supsrlem 9491 . . . . . . 7  |-  ( ( if ( u  e. 
R. ,  u ,  1R )  e.  A  /\  E. x  e.  R.  A. y  e.  A  y 
<R  x )  ->  E. x  e.  R.  ( A. y  e.  A  -.  x  <R  y  /\  A. y  e.  R.  ( y  <R  x  ->  E. z  e.  A  y  <R  z ) ) )
2213, 21dedth 3978 . . . . . 6  |-  ( u  e.  R.  ->  (
( u  e.  A  /\  E. x  e.  R.  A. y  e.  A  y 
<R  x )  ->  E. x  e.  R.  ( A. y  e.  A  -.  x  <R  y  /\  A. y  e.  R.  ( y  <R  x  ->  E. z  e.  A  y  <R  z ) ) ) )
2310, 22mpcom 36 . . . . 5  |-  ( ( u  e.  A  /\  E. x  e.  R.  A. y  e.  A  y  <R  x )  ->  E. x  e.  R.  ( A. y  e.  A  -.  x  <R  y  /\  A. y  e.  R.  ( y  <R  x  ->  E. z  e.  A  y  <R  z ) ) )
2423ex 434 . . . 4  |-  ( u  e.  A  ->  ( E. x  e.  R.  A. y  e.  A  y 
<R  x  ->  E. x  e.  R.  ( A. y  e.  A  -.  x  <R  y  /\  A. y  e.  R.  ( y  <R  x  ->  E. z  e.  A  y  <R  z ) ) ) )
2524exlimiv 1709 . . 3  |-  ( E. u  u  e.  A  ->  ( E. x  e. 
R.  A. y  e.  A  y  <R  x  ->  E. x  e.  R.  ( A. y  e.  A  -.  x  <R  y  /\  A. y  e.  R.  ( y  <R  x  ->  E. z  e.  A  y  <R  z ) ) ) )
261, 25sylbi 195 . 2  |-  ( A  =/=  (/)  ->  ( E. x  e.  R.  A. y  e.  A  y  <R  x  ->  E. x  e.  R.  ( A. y  e.  A  -.  x  <R  y  /\  A. y  e.  R.  (
y  <R  x  ->  E. z  e.  A  y  <R  z ) ) ) )
2726imp 429 1  |-  ( ( A  =/=  (/)  /\  E. x  e.  R.  A. y  e.  A  y  <R  x )  ->  E. x  e.  R.  ( A. y  e.  A  -.  x  <R  y  /\  A. y  e.  R.  ( y  <R  x  ->  E. z  e.  A  y  <R  z ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 369    = wceq 1383   E.wex 1599    e. wcel 1804   {cab 2428    =/= wne 2638   A.wral 2793   E.wrex 2794    C_ wss 3461   (/)c0 3770   ifcif 3926   <.cop 4020   class class class wbr 4437  (class class class)co 6281   [cec 7311   1Pc1p 9241    ~R cer 9245   R.cnr 9246   1Rc1r 9248    +R cplr 9250    <R cltr 9252
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1605  ax-4 1618  ax-5 1691  ax-6 1734  ax-7 1776  ax-8 1806  ax-9 1808  ax-10 1823  ax-11 1828  ax-12 1840  ax-13 1985  ax-ext 2421  ax-sep 4558  ax-nul 4566  ax-pow 4615  ax-pr 4676  ax-un 6577  ax-inf2 8061
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 975  df-3an 976  df-tru 1386  df-ex 1600  df-nf 1604  df-sb 1727  df-eu 2272  df-mo 2273  df-clab 2429  df-cleq 2435  df-clel 2438  df-nfc 2593  df-ne 2640  df-ral 2798  df-rex 2799  df-reu 2800  df-rmo 2801  df-rab 2802  df-v 3097  df-sbc 3314  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-pss 3477  df-nul 3771  df-if 3927  df-pw 3999  df-sn 4015  df-pr 4017  df-tp 4019  df-op 4021  df-uni 4235  df-int 4272  df-iun 4317  df-br 4438  df-opab 4496  df-mpt 4497  df-tr 4531  df-eprel 4781  df-id 4785  df-po 4790  df-so 4791  df-fr 4828  df-we 4830  df-ord 4871  df-on 4872  df-lim 4873  df-suc 4874  df-xp 4995  df-rel 4996  df-cnv 4997  df-co 4998  df-dm 4999  df-rn 5000  df-res 5001  df-ima 5002  df-iota 5541  df-fun 5580  df-fn 5581  df-f 5582  df-f1 5583  df-fo 5584  df-f1o 5585  df-fv 5586  df-ov 6284  df-oprab 6285  df-mpt2 6286  df-om 6686  df-1st 6785  df-2nd 6786  df-recs 7044  df-rdg 7078  df-1o 7132  df-oadd 7136  df-omul 7137  df-er 7313  df-ec 7315  df-qs 7319  df-ni 9253  df-pli 9254  df-mi 9255  df-lti 9256  df-plpq 9289  df-mpq 9290  df-ltpq 9291  df-enq 9292  df-nq 9293  df-erq 9294  df-plq 9295  df-mq 9296  df-1nq 9297  df-rq 9298  df-ltnq 9299  df-np 9362  df-1p 9363  df-plp 9364  df-mp 9365  df-ltp 9366  df-enr 9436  df-nr 9437  df-plr 9438  df-mr 9439  df-ltr 9440  df-0r 9441  df-1r 9442  df-m1r 9443
This theorem is referenced by:  axpre-sup  9549
  Copyright terms: Public domain W3C validator