MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  suprzub Structured version   Unicode version

Theorem suprzub 11164
Description: The supremum of a bounded-above set of integers is greater than any member of the set. (Contributed by Mario Carneiro, 21-Apr-2015.)
Assertion
Ref Expression
suprzub  |-  ( ( A  C_  ZZ  /\  E. x  e.  ZZ  A. y  e.  A  y  <_  x  /\  B  e.  A
)  ->  B  <_  sup ( A ,  RR ,  <  ) )
Distinct variable groups:    x, y, A    x, B
Allowed substitution hint:    B( y)

Proof of Theorem suprzub
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 simp3 993 . . 3  |-  ( ( A  C_  ZZ  /\  E. x  e.  ZZ  A. y  e.  A  y  <_  x  /\  B  e.  A
)  ->  B  e.  A )
2 ltso 9656 . . . . 5  |-  <  Or  RR
32a1i 11 . . . 4  |-  ( ( A  C_  ZZ  /\  E. x  e.  ZZ  A. y  e.  A  y  <_  x  /\  B  e.  A
)  ->  <  Or  RR )
4 simp1 991 . . . . . 6  |-  ( ( A  C_  ZZ  /\  E. x  e.  ZZ  A. y  e.  A  y  <_  x  /\  B  e.  A
)  ->  A  C_  ZZ )
5 zssre 10862 . . . . . 6  |-  ZZ  C_  RR
64, 5syl6ss 3511 . . . . 5  |-  ( ( A  C_  ZZ  /\  E. x  e.  ZZ  A. y  e.  A  y  <_  x  /\  B  e.  A
)  ->  A  C_  RR )
7 ne0i 3786 . . . . . . 7  |-  ( B  e.  A  ->  A  =/=  (/) )
81, 7syl 16 . . . . . 6  |-  ( ( A  C_  ZZ  /\  E. x  e.  ZZ  A. y  e.  A  y  <_  x  /\  B  e.  A
)  ->  A  =/=  (/) )
9 simp2 992 . . . . . 6  |-  ( ( A  C_  ZZ  /\  E. x  e.  ZZ  A. y  e.  A  y  <_  x  /\  B  e.  A
)  ->  E. x  e.  ZZ  A. y  e.  A  y  <_  x
)
10 zsupss 11162 . . . . . 6  |-  ( ( A  C_  ZZ  /\  A  =/=  (/)  /\  E. x  e.  ZZ  A. y  e.  A  y  <_  x
)  ->  E. x  e.  A  ( A. y  e.  A  -.  x  <  y  /\  A. y  e.  RR  (
y  <  x  ->  E. z  e.  A  y  <  z ) ) )
114, 8, 9, 10syl3anc 1223 . . . . 5  |-  ( ( A  C_  ZZ  /\  E. x  e.  ZZ  A. y  e.  A  y  <_  x  /\  B  e.  A
)  ->  E. x  e.  A  ( A. y  e.  A  -.  x  <  y  /\  A. y  e.  RR  (
y  <  x  ->  E. z  e.  A  y  <  z ) ) )
12 ssrexv 3560 . . . . 5  |-  ( A 
C_  RR  ->  ( E. x  e.  A  ( A. y  e.  A  -.  x  <  y  /\  A. y  e.  RR  (
y  <  x  ->  E. z  e.  A  y  <  z ) )  ->  E. x  e.  RR  ( A. y  e.  A  -.  x  <  y  /\  A. y  e.  RR  (
y  <  x  ->  E. z  e.  A  y  <  z ) ) ) )
136, 11, 12sylc 60 . . . 4  |-  ( ( A  C_  ZZ  /\  E. x  e.  ZZ  A. y  e.  A  y  <_  x  /\  B  e.  A
)  ->  E. x  e.  RR  ( A. y  e.  A  -.  x  <  y  /\  A. y  e.  RR  ( y  < 
x  ->  E. z  e.  A  y  <  z ) ) )
143, 13supub 7910 . . 3  |-  ( ( A  C_  ZZ  /\  E. x  e.  ZZ  A. y  e.  A  y  <_  x  /\  B  e.  A
)  ->  ( B  e.  A  ->  -.  sup ( A ,  RR ,  <  )  <  B ) )
151, 14mpd 15 . 2  |-  ( ( A  C_  ZZ  /\  E. x  e.  ZZ  A. y  e.  A  y  <_  x  /\  B  e.  A
)  ->  -.  sup ( A ,  RR ,  <  )  <  B )
166, 1sseldd 3500 . . 3  |-  ( ( A  C_  ZZ  /\  E. x  e.  ZZ  A. y  e.  A  y  <_  x  /\  B  e.  A
)  ->  B  e.  RR )
17 suprzcl2 11163 . . . . 5  |-  ( ( A  C_  ZZ  /\  A  =/=  (/)  /\  E. x  e.  ZZ  A. y  e.  A  y  <_  x
)  ->  sup ( A ,  RR ,  <  )  e.  A )
184, 8, 9, 17syl3anc 1223 . . . 4  |-  ( ( A  C_  ZZ  /\  E. x  e.  ZZ  A. y  e.  A  y  <_  x  /\  B  e.  A
)  ->  sup ( A ,  RR ,  <  )  e.  A )
196, 18sseldd 3500 . . 3  |-  ( ( A  C_  ZZ  /\  E. x  e.  ZZ  A. y  e.  A  y  <_  x  /\  B  e.  A
)  ->  sup ( A ,  RR ,  <  )  e.  RR )
2016, 19lenltd 9721 . 2  |-  ( ( A  C_  ZZ  /\  E. x  e.  ZZ  A. y  e.  A  y  <_  x  /\  B  e.  A
)  ->  ( B  <_  sup ( A ,  RR ,  <  )  <->  -.  sup ( A ,  RR ,  <  )  <  B ) )
2115, 20mpbird 232 1  |-  ( ( A  C_  ZZ  /\  E. x  e.  ZZ  A. y  e.  A  y  <_  x  /\  B  e.  A
)  ->  B  <_  sup ( A ,  RR ,  <  ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 369    /\ w3a 968    e. wcel 1762    =/= wne 2657   A.wral 2809   E.wrex 2810    C_ wss 3471   (/)c0 3780   class class class wbr 4442    Or wor 4794   supcsup 7891   RRcr 9482    < clt 9619    <_ cle 9620   ZZcz 10855
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1714  ax-7 1734  ax-8 1764  ax-9 1766  ax-10 1781  ax-11 1786  ax-12 1798  ax-13 1963  ax-ext 2440  ax-sep 4563  ax-nul 4571  ax-pow 4620  ax-pr 4681  ax-un 6569  ax-cnex 9539  ax-resscn 9540  ax-1cn 9541  ax-icn 9542  ax-addcl 9543  ax-addrcl 9544  ax-mulcl 9545  ax-mulrcl 9546  ax-mulcom 9547  ax-addass 9548  ax-mulass 9549  ax-distr 9550  ax-i2m1 9551  ax-1ne0 9552  ax-1rid 9553  ax-rnegex 9554  ax-rrecex 9555  ax-cnre 9556  ax-pre-lttri 9557  ax-pre-lttrn 9558  ax-pre-ltadd 9559  ax-pre-mulgt0 9560
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 969  df-3an 970  df-tru 1377  df-ex 1592  df-nf 1595  df-sb 1707  df-eu 2274  df-mo 2275  df-clab 2448  df-cleq 2454  df-clel 2457  df-nfc 2612  df-ne 2659  df-nel 2660  df-ral 2814  df-rex 2815  df-reu 2816  df-rmo 2817  df-rab 2818  df-v 3110  df-sbc 3327  df-csb 3431  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-pss 3487  df-nul 3781  df-if 3935  df-pw 4007  df-sn 4023  df-pr 4025  df-tp 4027  df-op 4029  df-uni 4241  df-iun 4322  df-br 4443  df-opab 4501  df-mpt 4502  df-tr 4536  df-eprel 4786  df-id 4790  df-po 4795  df-so 4796  df-fr 4833  df-we 4835  df-ord 4876  df-on 4877  df-lim 4878  df-suc 4879  df-xp 5000  df-rel 5001  df-cnv 5002  df-co 5003  df-dm 5004  df-rn 5005  df-res 5006  df-ima 5007  df-iota 5544  df-fun 5583  df-fn 5584  df-f 5585  df-f1 5586  df-fo 5587  df-f1o 5588  df-fv 5589  df-riota 6238  df-ov 6280  df-oprab 6281  df-mpt2 6282  df-om 6674  df-recs 7034  df-rdg 7068  df-er 7303  df-en 7509  df-dom 7510  df-sdom 7511  df-sup 7892  df-pnf 9621  df-mnf 9622  df-xr 9623  df-ltxr 9624  df-le 9625  df-sub 9798  df-neg 9799  df-nn 10528  df-n0 10787  df-z 10856  df-uz 11074
This theorem is referenced by:  gcdcllem3  14001  pcprendvds  14214  pcpremul  14217  prmreclem1  14284  0ram  14388  gexex  16647  fourierdlem25  31389
  Copyright terms: Public domain W3C validator