MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  suprzcl Structured version   Unicode version

Theorem suprzcl 10948
Description: The supremum of a bounded-above set of integers is a member of the set. (Contributed by Paul Chapman, 21-Mar-2011.) (Revised by Mario Carneiro, 26-Jun-2015.)
Assertion
Ref Expression
suprzcl  |-  ( ( A  C_  ZZ  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  y  <_  x
)  ->  sup ( A ,  RR ,  <  )  e.  A )
Distinct variable group:    x, y, A

Proof of Theorem suprzcl
Dummy variables  w  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 zssre 10877 . . . . . 6  |-  ZZ  C_  RR
2 sstr 3497 . . . . . 6  |-  ( ( A  C_  ZZ  /\  ZZ  C_  RR )  ->  A  C_  RR )
31, 2mpan2 671 . . . . 5  |-  ( A 
C_  ZZ  ->  A  C_  RR )
4 suprcl 10509 . . . . 5  |-  ( ( A  C_  RR  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  y  <_  x
)  ->  sup ( A ,  RR ,  <  )  e.  RR )
53, 4syl3an1 1262 . . . 4  |-  ( ( A  C_  ZZ  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  y  <_  x
)  ->  sup ( A ,  RR ,  <  )  e.  RR )
65ltm1d 10484 . . 3  |-  ( ( A  C_  ZZ  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  y  <_  x
)  ->  ( sup ( A ,  RR ,  <  )  -  1 )  <  sup ( A ,  RR ,  <  ) )
7 peano2rem 9891 . . . . . 6  |-  ( sup ( A ,  RR ,  <  )  e.  RR  ->  ( sup ( A ,  RR ,  <  )  -  1 )  e.  RR )
84, 7syl 16 . . . . 5  |-  ( ( A  C_  RR  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  y  <_  x
)  ->  ( sup ( A ,  RR ,  <  )  -  1 )  e.  RR )
9 suprlub 10511 . . . . 5  |-  ( ( ( A  C_  RR  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  y  <_  x )  /\  ( sup ( A ,  RR ,  <  )  -  1 )  e.  RR )  ->  ( ( sup ( A ,  RR ,  <  )  -  1 )  <  sup ( A ,  RR ,  <  )  <->  E. z  e.  A  ( sup ( A ,  RR ,  <  )  - 
1 )  <  z
) )
108, 9mpdan 668 . . . 4  |-  ( ( A  C_  RR  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  y  <_  x
)  ->  ( ( sup ( A ,  RR ,  <  )  -  1 )  <  sup ( A ,  RR ,  <  )  <->  E. z  e.  A  ( sup ( A ,  RR ,  <  )  - 
1 )  <  z
) )
113, 10syl3an1 1262 . . 3  |-  ( ( A  C_  ZZ  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  y  <_  x
)  ->  ( ( sup ( A ,  RR ,  <  )  -  1 )  <  sup ( A ,  RR ,  <  )  <->  E. z  e.  A  ( sup ( A ,  RR ,  <  )  - 
1 )  <  z
) )
126, 11mpbid 210 . 2  |-  ( ( A  C_  ZZ  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  y  <_  x
)  ->  E. z  e.  A  ( sup ( A ,  RR ,  <  )  -  1 )  <  z )
13 simpl1 1000 . . . . . . . . . 10  |-  ( ( ( A  C_  ZZ  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  y  <_  x )  /\  ( z  e.  A  /\  ( sup ( A ,  RR ,  <  )  -  1 )  <  z ) )  ->  A  C_  ZZ )
1413sselda 3489 . . . . . . . . 9  |-  ( ( ( ( A  C_  ZZ  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  y  <_  x )  /\  ( z  e.  A  /\  ( sup ( A ,  RR ,  <  )  -  1 )  <  z ) )  /\  w  e.  A )  ->  w  e.  ZZ )
151, 14sseldi 3487 . . . . . . . 8  |-  ( ( ( ( A  C_  ZZ  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  y  <_  x )  /\  ( z  e.  A  /\  ( sup ( A ,  RR ,  <  )  -  1 )  <  z ) )  /\  w  e.  A )  ->  w  e.  RR )
165adantr 465 . . . . . . . . 9  |-  ( ( ( A  C_  ZZ  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  y  <_  x )  /\  ( z  e.  A  /\  ( sup ( A ,  RR ,  <  )  -  1 )  <  z ) )  ->  sup ( A ,  RR ,  <  )  e.  RR )
1716adantr 465 . . . . . . . 8  |-  ( ( ( ( A  C_  ZZ  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  y  <_  x )  /\  ( z  e.  A  /\  ( sup ( A ,  RR ,  <  )  -  1 )  <  z ) )  /\  w  e.  A )  ->  sup ( A ,  RR ,  <  )  e.  RR )
18 simprl 756 . . . . . . . . . . . 12  |-  ( ( ( A  C_  ZZ  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  y  <_  x )  /\  ( z  e.  A  /\  ( sup ( A ,  RR ,  <  )  -  1 )  <  z ) )  ->  z  e.  A )
1913, 18sseldd 3490 . . . . . . . . . . 11  |-  ( ( ( A  C_  ZZ  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  y  <_  x )  /\  ( z  e.  A  /\  ( sup ( A ,  RR ,  <  )  -  1 )  <  z ) )  ->  z  e.  ZZ )
20 zre 10874 . . . . . . . . . . 11  |-  ( z  e.  ZZ  ->  z  e.  RR )
2119, 20syl 16 . . . . . . . . . 10  |-  ( ( ( A  C_  ZZ  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  y  <_  x )  /\  ( z  e.  A  /\  ( sup ( A ,  RR ,  <  )  -  1 )  <  z ) )  ->  z  e.  RR )
22 peano2re 9756 . . . . . . . . . 10  |-  ( z  e.  RR  ->  (
z  +  1 )  e.  RR )
2321, 22syl 16 . . . . . . . . 9  |-  ( ( ( A  C_  ZZ  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  y  <_  x )  /\  ( z  e.  A  /\  ( sup ( A ,  RR ,  <  )  -  1 )  <  z ) )  ->  ( z  +  1 )  e.  RR )
2423adantr 465 . . . . . . . 8  |-  ( ( ( ( A  C_  ZZ  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  y  <_  x )  /\  ( z  e.  A  /\  ( sup ( A ,  RR ,  <  )  -  1 )  <  z ) )  /\  w  e.  A )  ->  (
z  +  1 )  e.  RR )
25 suprub 10510 . . . . . . . . . 10  |-  ( ( ( A  C_  RR  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  y  <_  x )  /\  w  e.  A )  ->  w  <_  sup ( A ,  RR ,  <  ) )
263, 25syl3anl1 1277 . . . . . . . . 9  |-  ( ( ( A  C_  ZZ  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  y  <_  x )  /\  w  e.  A )  ->  w  <_  sup ( A ,  RR ,  <  ) )
2726adantlr 714 . . . . . . . 8  |-  ( ( ( ( A  C_  ZZ  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  y  <_  x )  /\  ( z  e.  A  /\  ( sup ( A ,  RR ,  <  )  -  1 )  <  z ) )  /\  w  e.  A )  ->  w  <_  sup ( A ,  RR ,  <  ) )
28 simprr 757 . . . . . . . . . 10  |-  ( ( ( A  C_  ZZ  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  y  <_  x )  /\  ( z  e.  A  /\  ( sup ( A ,  RR ,  <  )  -  1 )  <  z ) )  ->  ( sup ( A ,  RR ,  <  )  -  1 )  <  z )
29 1red 9614 . . . . . . . . . . 11  |-  ( ( ( A  C_  ZZ  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  y  <_  x )  /\  ( z  e.  A  /\  ( sup ( A ,  RR ,  <  )  -  1 )  <  z ) )  ->  1  e.  RR )
3016, 29, 21ltsubaddd 10154 . . . . . . . . . 10  |-  ( ( ( A  C_  ZZ  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  y  <_  x )  /\  ( z  e.  A  /\  ( sup ( A ,  RR ,  <  )  -  1 )  <  z ) )  ->  ( ( sup ( A ,  RR ,  <  )  -  1 )  <  z  <->  sup ( A ,  RR ,  <  )  <  ( z  +  1 ) ) )
3128, 30mpbid 210 . . . . . . . . 9  |-  ( ( ( A  C_  ZZ  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  y  <_  x )  /\  ( z  e.  A  /\  ( sup ( A ,  RR ,  <  )  -  1 )  <  z ) )  ->  sup ( A ,  RR ,  <  )  <  ( z  +  1 ) )
3231adantr 465 . . . . . . . 8  |-  ( ( ( ( A  C_  ZZ  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  y  <_  x )  /\  ( z  e.  A  /\  ( sup ( A ,  RR ,  <  )  -  1 )  <  z ) )  /\  w  e.  A )  ->  sup ( A ,  RR ,  <  )  <  ( z  +  1 ) )
3315, 17, 24, 27, 32lelttrd 9743 . . . . . . 7  |-  ( ( ( ( A  C_  ZZ  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  y  <_  x )  /\  ( z  e.  A  /\  ( sup ( A ,  RR ,  <  )  -  1 )  <  z ) )  /\  w  e.  A )  ->  w  <  ( z  +  1 ) )
3419adantr 465 . . . . . . . 8  |-  ( ( ( ( A  C_  ZZ  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  y  <_  x )  /\  ( z  e.  A  /\  ( sup ( A ,  RR ,  <  )  -  1 )  <  z ) )  /\  w  e.  A )  ->  z  e.  ZZ )
35 zleltp1 10920 . . . . . . . 8  |-  ( ( w  e.  ZZ  /\  z  e.  ZZ )  ->  ( w  <_  z  <->  w  <  ( z  +  1 ) ) )
3614, 34, 35syl2anc 661 . . . . . . 7  |-  ( ( ( ( A  C_  ZZ  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  y  <_  x )  /\  ( z  e.  A  /\  ( sup ( A ,  RR ,  <  )  -  1 )  <  z ) )  /\  w  e.  A )  ->  (
w  <_  z  <->  w  <  ( z  +  1 ) ) )
3733, 36mpbird 232 . . . . . 6  |-  ( ( ( ( A  C_  ZZ  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  y  <_  x )  /\  ( z  e.  A  /\  ( sup ( A ,  RR ,  <  )  -  1 )  <  z ) )  /\  w  e.  A )  ->  w  <_  z )
3837ralrimiva 2857 . . . . 5  |-  ( ( ( A  C_  ZZ  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  y  <_  x )  /\  ( z  e.  A  /\  ( sup ( A ,  RR ,  <  )  -  1 )  <  z ) )  ->  A. w  e.  A  w  <_  z )
39 suprleub 10513 . . . . . . 7  |-  ( ( ( A  C_  RR  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  y  <_  x )  /\  z  e.  RR )  ->  ( sup ( A ,  RR ,  <  )  <_  z  <->  A. w  e.  A  w  <_  z ) )
403, 39syl3anl1 1277 . . . . . 6  |-  ( ( ( A  C_  ZZ  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  y  <_  x )  /\  z  e.  RR )  ->  ( sup ( A ,  RR ,  <  )  <_  z  <->  A. w  e.  A  w  <_  z ) )
4121, 40syldan 470 . . . . 5  |-  ( ( ( A  C_  ZZ  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  y  <_  x )  /\  ( z  e.  A  /\  ( sup ( A ,  RR ,  <  )  -  1 )  <  z ) )  ->  ( sup ( A ,  RR ,  <  )  <_  z  <->  A. w  e.  A  w  <_  z ) )
4238, 41mpbird 232 . . . 4  |-  ( ( ( A  C_  ZZ  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  y  <_  x )  /\  ( z  e.  A  /\  ( sup ( A ,  RR ,  <  )  -  1 )  <  z ) )  ->  sup ( A ,  RR ,  <  )  <_  z )
43 suprub 10510 . . . . . 6  |-  ( ( ( A  C_  RR  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  y  <_  x )  /\  z  e.  A )  ->  z  <_  sup ( A ,  RR ,  <  ) )
443, 43syl3anl1 1277 . . . . 5  |-  ( ( ( A  C_  ZZ  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  y  <_  x )  /\  z  e.  A )  ->  z  <_  sup ( A ,  RR ,  <  ) )
4544adantrr 716 . . . 4  |-  ( ( ( A  C_  ZZ  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  y  <_  x )  /\  ( z  e.  A  /\  ( sup ( A ,  RR ,  <  )  -  1 )  <  z ) )  ->  z  <_  sup ( A ,  RR ,  <  ) )
4616, 21letri3d 9730 . . . 4  |-  ( ( ( A  C_  ZZ  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  y  <_  x )  /\  ( z  e.  A  /\  ( sup ( A ,  RR ,  <  )  -  1 )  <  z ) )  ->  ( sup ( A ,  RR ,  <  )  =  z  <->  ( sup ( A ,  RR ,  <  )  <_  z  /\  z  <_  sup ( A ,  RR ,  <  ) ) ) )
4742, 45, 46mpbir2and 922 . . 3  |-  ( ( ( A  C_  ZZ  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  y  <_  x )  /\  ( z  e.  A  /\  ( sup ( A ,  RR ,  <  )  -  1 )  <  z ) )  ->  sup ( A ,  RR ,  <  )  =  z )
4847, 18eqeltrd 2531 . 2  |-  ( ( ( A  C_  ZZ  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  y  <_  x )  /\  ( z  e.  A  /\  ( sup ( A ,  RR ,  <  )  -  1 )  <  z ) )  ->  sup ( A ,  RR ,  <  )  e.  A )
4912, 48rexlimddv 2939 1  |-  ( ( A  C_  ZZ  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  y  <_  x
)  ->  sup ( A ,  RR ,  <  )  e.  A )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 974    = wceq 1383    e. wcel 1804    =/= wne 2638   A.wral 2793   E.wrex 2794    C_ wss 3461   (/)c0 3770   class class class wbr 4437  (class class class)co 6281   supcsup 7902   RRcr 9494   1c1 9496    + caddc 9498    < clt 9631    <_ cle 9632    - cmin 9810   ZZcz 10870
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1605  ax-4 1618  ax-5 1691  ax-6 1734  ax-7 1776  ax-8 1806  ax-9 1808  ax-10 1823  ax-11 1828  ax-12 1840  ax-13 1985  ax-ext 2421  ax-sep 4558  ax-nul 4566  ax-pow 4615  ax-pr 4676  ax-un 6577  ax-resscn 9552  ax-1cn 9553  ax-icn 9554  ax-addcl 9555  ax-addrcl 9556  ax-mulcl 9557  ax-mulrcl 9558  ax-mulcom 9559  ax-addass 9560  ax-mulass 9561  ax-distr 9562  ax-i2m1 9563  ax-1ne0 9564  ax-1rid 9565  ax-rnegex 9566  ax-rrecex 9567  ax-cnre 9568  ax-pre-lttri 9569  ax-pre-lttrn 9570  ax-pre-ltadd 9571  ax-pre-mulgt0 9572  ax-pre-sup 9573
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 975  df-3an 976  df-tru 1386  df-ex 1600  df-nf 1604  df-sb 1727  df-eu 2272  df-mo 2273  df-clab 2429  df-cleq 2435  df-clel 2438  df-nfc 2593  df-ne 2640  df-nel 2641  df-ral 2798  df-rex 2799  df-reu 2800  df-rmo 2801  df-rab 2802  df-v 3097  df-sbc 3314  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-pss 3477  df-nul 3771  df-if 3927  df-pw 3999  df-sn 4015  df-pr 4017  df-tp 4019  df-op 4021  df-uni 4235  df-iun 4317  df-br 4438  df-opab 4496  df-mpt 4497  df-tr 4531  df-eprel 4781  df-id 4785  df-po 4790  df-so 4791  df-fr 4828  df-we 4830  df-ord 4871  df-on 4872  df-lim 4873  df-suc 4874  df-xp 4995  df-rel 4996  df-cnv 4997  df-co 4998  df-dm 4999  df-rn 5000  df-res 5001  df-ima 5002  df-iota 5541  df-fun 5580  df-fn 5581  df-f 5582  df-f1 5583  df-fo 5584  df-f1o 5585  df-fv 5586  df-riota 6242  df-ov 6284  df-oprab 6285  df-mpt2 6286  df-om 6686  df-recs 7044  df-rdg 7078  df-er 7313  df-en 7519  df-dom 7520  df-sdom 7521  df-sup 7903  df-pnf 9633  df-mnf 9634  df-xr 9635  df-ltxr 9636  df-le 9637  df-sub 9812  df-neg 9813  df-nn 10543  df-n0 10802  df-z 10871
This theorem is referenced by:  suprfinzcl  10983  rpnnen1lem1  11217  rpnnen1lem2  11218  pgpssslw  16508  plyeq0lem  22480  fourierdlem20  31798  fourierdlem64  31842
  Copyright terms: Public domain W3C validator