MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  suprzcl Structured version   Unicode version

Theorem suprzcl 10950
Description: The supremum of a bounded-above set of integers is a member of the set. (Contributed by Paul Chapman, 21-Mar-2011.) (Revised by Mario Carneiro, 26-Jun-2015.)
Assertion
Ref Expression
suprzcl  |-  ( ( A  C_  ZZ  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  y  <_  x
)  ->  sup ( A ,  RR ,  <  )  e.  A )
Distinct variable group:    x, y, A

Proof of Theorem suprzcl
Dummy variables  w  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 zssre 10881 . . . . . 6  |-  ZZ  C_  RR
2 sstr 3517 . . . . . 6  |-  ( ( A  C_  ZZ  /\  ZZ  C_  RR )  ->  A  C_  RR )
31, 2mpan2 671 . . . . 5  |-  ( A 
C_  ZZ  ->  A  C_  RR )
4 suprcl 10513 . . . . 5  |-  ( ( A  C_  RR  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  y  <_  x
)  ->  sup ( A ,  RR ,  <  )  e.  RR )
53, 4syl3an1 1261 . . . 4  |-  ( ( A  C_  ZZ  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  y  <_  x
)  ->  sup ( A ,  RR ,  <  )  e.  RR )
65ltm1d 10488 . . 3  |-  ( ( A  C_  ZZ  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  y  <_  x
)  ->  ( sup ( A ,  RR ,  <  )  -  1 )  <  sup ( A ,  RR ,  <  ) )
7 peano2rem 9896 . . . . . 6  |-  ( sup ( A ,  RR ,  <  )  e.  RR  ->  ( sup ( A ,  RR ,  <  )  -  1 )  e.  RR )
84, 7syl 16 . . . . 5  |-  ( ( A  C_  RR  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  y  <_  x
)  ->  ( sup ( A ,  RR ,  <  )  -  1 )  e.  RR )
9 suprlub 10515 . . . . 5  |-  ( ( ( A  C_  RR  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  y  <_  x )  /\  ( sup ( A ,  RR ,  <  )  -  1 )  e.  RR )  ->  ( ( sup ( A ,  RR ,  <  )  -  1 )  <  sup ( A ,  RR ,  <  )  <->  E. z  e.  A  ( sup ( A ,  RR ,  <  )  - 
1 )  <  z
) )
108, 9mpdan 668 . . . 4  |-  ( ( A  C_  RR  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  y  <_  x
)  ->  ( ( sup ( A ,  RR ,  <  )  -  1 )  <  sup ( A ,  RR ,  <  )  <->  E. z  e.  A  ( sup ( A ,  RR ,  <  )  - 
1 )  <  z
) )
113, 10syl3an1 1261 . . 3  |-  ( ( A  C_  ZZ  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  y  <_  x
)  ->  ( ( sup ( A ,  RR ,  <  )  -  1 )  <  sup ( A ,  RR ,  <  )  <->  E. z  e.  A  ( sup ( A ,  RR ,  <  )  - 
1 )  <  z
) )
126, 11mpbid 210 . 2  |-  ( ( A  C_  ZZ  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  y  <_  x
)  ->  E. z  e.  A  ( sup ( A ,  RR ,  <  )  -  1 )  <  z )
13 simpl1 999 . . . . . . . . . 10  |-  ( ( ( A  C_  ZZ  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  y  <_  x )  /\  ( z  e.  A  /\  ( sup ( A ,  RR ,  <  )  -  1 )  <  z ) )  ->  A  C_  ZZ )
1413sselda 3509 . . . . . . . . 9  |-  ( ( ( ( A  C_  ZZ  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  y  <_  x )  /\  ( z  e.  A  /\  ( sup ( A ,  RR ,  <  )  -  1 )  <  z ) )  /\  w  e.  A )  ->  w  e.  ZZ )
151, 14sseldi 3507 . . . . . . . 8  |-  ( ( ( ( A  C_  ZZ  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  y  <_  x )  /\  ( z  e.  A  /\  ( sup ( A ,  RR ,  <  )  -  1 )  <  z ) )  /\  w  e.  A )  ->  w  e.  RR )
165adantr 465 . . . . . . . . 9  |-  ( ( ( A  C_  ZZ  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  y  <_  x )  /\  ( z  e.  A  /\  ( sup ( A ,  RR ,  <  )  -  1 )  <  z ) )  ->  sup ( A ,  RR ,  <  )  e.  RR )
1716adantr 465 . . . . . . . 8  |-  ( ( ( ( A  C_  ZZ  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  y  <_  x )  /\  ( z  e.  A  /\  ( sup ( A ,  RR ,  <  )  -  1 )  <  z ) )  /\  w  e.  A )  ->  sup ( A ,  RR ,  <  )  e.  RR )
18 simprl 755 . . . . . . . . . . . 12  |-  ( ( ( A  C_  ZZ  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  y  <_  x )  /\  ( z  e.  A  /\  ( sup ( A ,  RR ,  <  )  -  1 )  <  z ) )  ->  z  e.  A )
1913, 18sseldd 3510 . . . . . . . . . . 11  |-  ( ( ( A  C_  ZZ  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  y  <_  x )  /\  ( z  e.  A  /\  ( sup ( A ,  RR ,  <  )  -  1 )  <  z ) )  ->  z  e.  ZZ )
20 zre 10878 . . . . . . . . . . 11  |-  ( z  e.  ZZ  ->  z  e.  RR )
2119, 20syl 16 . . . . . . . . . 10  |-  ( ( ( A  C_  ZZ  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  y  <_  x )  /\  ( z  e.  A  /\  ( sup ( A ,  RR ,  <  )  -  1 )  <  z ) )  ->  z  e.  RR )
22 peano2re 9762 . . . . . . . . . 10  |-  ( z  e.  RR  ->  (
z  +  1 )  e.  RR )
2321, 22syl 16 . . . . . . . . 9  |-  ( ( ( A  C_  ZZ  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  y  <_  x )  /\  ( z  e.  A  /\  ( sup ( A ,  RR ,  <  )  -  1 )  <  z ) )  ->  ( z  +  1 )  e.  RR )
2423adantr 465 . . . . . . . 8  |-  ( ( ( ( A  C_  ZZ  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  y  <_  x )  /\  ( z  e.  A  /\  ( sup ( A ,  RR ,  <  )  -  1 )  <  z ) )  /\  w  e.  A )  ->  (
z  +  1 )  e.  RR )
25 suprub 10514 . . . . . . . . . 10  |-  ( ( ( A  C_  RR  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  y  <_  x )  /\  w  e.  A )  ->  w  <_  sup ( A ,  RR ,  <  ) )
263, 25syl3anl1 1276 . . . . . . . . 9  |-  ( ( ( A  C_  ZZ  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  y  <_  x )  /\  w  e.  A )  ->  w  <_  sup ( A ,  RR ,  <  ) )
2726adantlr 714 . . . . . . . 8  |-  ( ( ( ( A  C_  ZZ  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  y  <_  x )  /\  ( z  e.  A  /\  ( sup ( A ,  RR ,  <  )  -  1 )  <  z ) )  /\  w  e.  A )  ->  w  <_  sup ( A ,  RR ,  <  ) )
28 simprr 756 . . . . . . . . . 10  |-  ( ( ( A  C_  ZZ  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  y  <_  x )  /\  ( z  e.  A  /\  ( sup ( A ,  RR ,  <  )  -  1 )  <  z ) )  ->  ( sup ( A ,  RR ,  <  )  -  1 )  <  z )
29 1red 9621 . . . . . . . . . . 11  |-  ( ( ( A  C_  ZZ  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  y  <_  x )  /\  ( z  e.  A  /\  ( sup ( A ,  RR ,  <  )  -  1 )  <  z ) )  ->  1  e.  RR )
3016, 29, 21ltsubaddd 10158 . . . . . . . . . 10  |-  ( ( ( A  C_  ZZ  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  y  <_  x )  /\  ( z  e.  A  /\  ( sup ( A ,  RR ,  <  )  -  1 )  <  z ) )  ->  ( ( sup ( A ,  RR ,  <  )  -  1 )  <  z  <->  sup ( A ,  RR ,  <  )  <  ( z  +  1 ) ) )
3128, 30mpbid 210 . . . . . . . . 9  |-  ( ( ( A  C_  ZZ  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  y  <_  x )  /\  ( z  e.  A  /\  ( sup ( A ,  RR ,  <  )  -  1 )  <  z ) )  ->  sup ( A ,  RR ,  <  )  <  ( z  +  1 ) )
3231adantr 465 . . . . . . . 8  |-  ( ( ( ( A  C_  ZZ  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  y  <_  x )  /\  ( z  e.  A  /\  ( sup ( A ,  RR ,  <  )  -  1 )  <  z ) )  /\  w  e.  A )  ->  sup ( A ,  RR ,  <  )  <  ( z  +  1 ) )
3315, 17, 24, 27, 32lelttrd 9749 . . . . . . 7  |-  ( ( ( ( A  C_  ZZ  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  y  <_  x )  /\  ( z  e.  A  /\  ( sup ( A ,  RR ,  <  )  -  1 )  <  z ) )  /\  w  e.  A )  ->  w  <  ( z  +  1 ) )
3419adantr 465 . . . . . . . 8  |-  ( ( ( ( A  C_  ZZ  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  y  <_  x )  /\  ( z  e.  A  /\  ( sup ( A ,  RR ,  <  )  -  1 )  <  z ) )  /\  w  e.  A )  ->  z  e.  ZZ )
35 zleltp1 10923 . . . . . . . 8  |-  ( ( w  e.  ZZ  /\  z  e.  ZZ )  ->  ( w  <_  z  <->  w  <  ( z  +  1 ) ) )
3614, 34, 35syl2anc 661 . . . . . . 7  |-  ( ( ( ( A  C_  ZZ  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  y  <_  x )  /\  ( z  e.  A  /\  ( sup ( A ,  RR ,  <  )  -  1 )  <  z ) )  /\  w  e.  A )  ->  (
w  <_  z  <->  w  <  ( z  +  1 ) ) )
3733, 36mpbird 232 . . . . . 6  |-  ( ( ( ( A  C_  ZZ  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  y  <_  x )  /\  ( z  e.  A  /\  ( sup ( A ,  RR ,  <  )  -  1 )  <  z ) )  /\  w  e.  A )  ->  w  <_  z )
3837ralrimiva 2881 . . . . 5  |-  ( ( ( A  C_  ZZ  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  y  <_  x )  /\  ( z  e.  A  /\  ( sup ( A ,  RR ,  <  )  -  1 )  <  z ) )  ->  A. w  e.  A  w  <_  z )
39 suprleub 10517 . . . . . . 7  |-  ( ( ( A  C_  RR  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  y  <_  x )  /\  z  e.  RR )  ->  ( sup ( A ,  RR ,  <  )  <_  z  <->  A. w  e.  A  w  <_  z ) )
403, 39syl3anl1 1276 . . . . . 6  |-  ( ( ( A  C_  ZZ  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  y  <_  x )  /\  z  e.  RR )  ->  ( sup ( A ,  RR ,  <  )  <_  z  <->  A. w  e.  A  w  <_  z ) )
4121, 40syldan 470 . . . . 5  |-  ( ( ( A  C_  ZZ  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  y  <_  x )  /\  ( z  e.  A  /\  ( sup ( A ,  RR ,  <  )  -  1 )  <  z ) )  ->  ( sup ( A ,  RR ,  <  )  <_  z  <->  A. w  e.  A  w  <_  z ) )
4238, 41mpbird 232 . . . 4  |-  ( ( ( A  C_  ZZ  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  y  <_  x )  /\  ( z  e.  A  /\  ( sup ( A ,  RR ,  <  )  -  1 )  <  z ) )  ->  sup ( A ,  RR ,  <  )  <_  z )
43 suprub 10514 . . . . . 6  |-  ( ( ( A  C_  RR  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  y  <_  x )  /\  z  e.  A )  ->  z  <_  sup ( A ,  RR ,  <  ) )
443, 43syl3anl1 1276 . . . . 5  |-  ( ( ( A  C_  ZZ  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  y  <_  x )  /\  z  e.  A )  ->  z  <_  sup ( A ,  RR ,  <  ) )
4544adantrr 716 . . . 4  |-  ( ( ( A  C_  ZZ  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  y  <_  x )  /\  ( z  e.  A  /\  ( sup ( A ,  RR ,  <  )  -  1 )  <  z ) )  ->  z  <_  sup ( A ,  RR ,  <  ) )
4616, 21letri3d 9736 . . . 4  |-  ( ( ( A  C_  ZZ  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  y  <_  x )  /\  ( z  e.  A  /\  ( sup ( A ,  RR ,  <  )  -  1 )  <  z ) )  ->  ( sup ( A ,  RR ,  <  )  =  z  <->  ( sup ( A ,  RR ,  <  )  <_  z  /\  z  <_  sup ( A ,  RR ,  <  ) ) ) )
4742, 45, 46mpbir2and 920 . . 3  |-  ( ( ( A  C_  ZZ  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  y  <_  x )  /\  ( z  e.  A  /\  ( sup ( A ,  RR ,  <  )  -  1 )  <  z ) )  ->  sup ( A ,  RR ,  <  )  =  z )
4847, 18eqeltrd 2555 . 2  |-  ( ( ( A  C_  ZZ  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  y  <_  x )  /\  ( z  e.  A  /\  ( sup ( A ,  RR ,  <  )  -  1 )  <  z ) )  ->  sup ( A ,  RR ,  <  )  e.  A )
4912, 48rexlimddv 2963 1  |-  ( ( A  C_  ZZ  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  y  <_  x
)  ->  sup ( A ,  RR ,  <  )  e.  A )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 973    = wceq 1379    e. wcel 1767    =/= wne 2662   A.wral 2817   E.wrex 2818    C_ wss 3481   (/)c0 3790   class class class wbr 4452  (class class class)co 6294   supcsup 7910   RRcr 9501   1c1 9503    + caddc 9505    < clt 9638    <_ cle 9639    - cmin 9815   ZZcz 10874
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4573  ax-nul 4581  ax-pow 4630  ax-pr 4691  ax-un 6586  ax-resscn 9559  ax-1cn 9560  ax-icn 9561  ax-addcl 9562  ax-addrcl 9563  ax-mulcl 9564  ax-mulrcl 9565  ax-mulcom 9566  ax-addass 9567  ax-mulass 9568  ax-distr 9569  ax-i2m1 9570  ax-1ne0 9571  ax-1rid 9572  ax-rnegex 9573  ax-rrecex 9574  ax-cnre 9575  ax-pre-lttri 9576  ax-pre-lttrn 9577  ax-pre-ltadd 9578  ax-pre-mulgt0 9579  ax-pre-sup 9580
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2822  df-rex 2823  df-reu 2824  df-rmo 2825  df-rab 2826  df-v 3120  df-sbc 3337  df-csb 3441  df-dif 3484  df-un 3486  df-in 3488  df-ss 3495  df-pss 3497  df-nul 3791  df-if 3945  df-pw 4017  df-sn 4033  df-pr 4035  df-tp 4037  df-op 4039  df-uni 4251  df-iun 4332  df-br 4453  df-opab 4511  df-mpt 4512  df-tr 4546  df-eprel 4796  df-id 4800  df-po 4805  df-so 4806  df-fr 4843  df-we 4845  df-ord 4886  df-on 4887  df-lim 4888  df-suc 4889  df-xp 5010  df-rel 5011  df-cnv 5012  df-co 5013  df-dm 5014  df-rn 5015  df-res 5016  df-ima 5017  df-iota 5556  df-fun 5595  df-fn 5596  df-f 5597  df-f1 5598  df-fo 5599  df-f1o 5600  df-fv 5601  df-riota 6255  df-ov 6297  df-oprab 6298  df-mpt2 6299  df-om 6695  df-recs 7052  df-rdg 7086  df-er 7321  df-en 7527  df-dom 7528  df-sdom 7529  df-sup 7911  df-pnf 9640  df-mnf 9641  df-xr 9642  df-ltxr 9643  df-le 9644  df-sub 9817  df-neg 9818  df-nn 10547  df-n0 10806  df-z 10875
This theorem is referenced by:  suprfinzcl  10985  rpnnen1lem1  11218  rpnnen1lem2  11219  pgpssslw  16484  plyeq0lem  22452  fourierdlem20  31718  fourierdlem64  31762
  Copyright terms: Public domain W3C validator