MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  suprub Structured version   Unicode version

Theorem suprub 10499
Description: A member of a nonempty bounded set of reals is less than or equal to the set's upper bound. (Contributed by NM, 12-Oct-2004.)
Assertion
Ref Expression
suprub  |-  ( ( ( A  C_  RR  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  y  <_  x )  /\  B  e.  A )  ->  B  <_  sup ( A ,  RR ,  <  ) )
Distinct variable group:    x, y, A
Allowed substitution hints:    B( x, y)

Proof of Theorem suprub
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 ltso 9654 . . . . 5  |-  <  Or  RR
21a1i 11 . . . 4  |-  ( ( A  C_  RR  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  y  <_  x
)  ->  <  Or  RR )
3 sup3 10495 . . . 4  |-  ( ( A  C_  RR  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  y  <_  x
)  ->  E. x  e.  RR  ( A. y  e.  A  -.  x  <  y  /\  A. y  e.  RR  ( y  < 
x  ->  E. z  e.  A  y  <  z ) ) )
42, 3supub 7910 . . 3  |-  ( ( A  C_  RR  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  y  <_  x
)  ->  ( B  e.  A  ->  -.  sup ( A ,  RR ,  <  )  <  B ) )
54imp 427 . 2  |-  ( ( ( A  C_  RR  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  y  <_  x )  /\  B  e.  A )  ->  -.  sup ( A ,  RR ,  <  )  <  B
)
6 simp1 994 . . . 4  |-  ( ( A  C_  RR  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  y  <_  x
)  ->  A  C_  RR )
76sselda 3489 . . 3  |-  ( ( ( A  C_  RR  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  y  <_  x )  /\  B  e.  A )  ->  B  e.  RR )
8 suprcl 10498 . . . 4  |-  ( ( A  C_  RR  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  y  <_  x
)  ->  sup ( A ,  RR ,  <  )  e.  RR )
98adantr 463 . . 3  |-  ( ( ( A  C_  RR  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  y  <_  x )  /\  B  e.  A )  ->  sup ( A ,  RR ,  <  )  e.  RR )
107, 9lenltd 9720 . 2  |-  ( ( ( A  C_  RR  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  y  <_  x )  /\  B  e.  A )  ->  ( B  <_  sup ( A ,  RR ,  <  )  <->  -.  sup ( A ,  RR ,  <  )  <  B ) )
115, 10mpbird 232 1  |-  ( ( ( A  C_  RR  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  y  <_  x )  /\  B  e.  A )  ->  B  <_  sup ( A ,  RR ,  <  ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 367    /\ w3a 971    e. wcel 1823    =/= wne 2649   A.wral 2804   E.wrex 2805    C_ wss 3461   (/)c0 3783   class class class wbr 4439    Or wor 4788   supcsup 7892   RRcr 9480    < clt 9617    <_ cle 9618
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1623  ax-4 1636  ax-5 1709  ax-6 1752  ax-7 1795  ax-8 1825  ax-9 1827  ax-10 1842  ax-11 1847  ax-12 1859  ax-13 2004  ax-ext 2432  ax-sep 4560  ax-nul 4568  ax-pow 4615  ax-pr 4676  ax-un 6565  ax-resscn 9538  ax-1cn 9539  ax-icn 9540  ax-addcl 9541  ax-addrcl 9542  ax-mulcl 9543  ax-mulrcl 9544  ax-mulcom 9545  ax-addass 9546  ax-mulass 9547  ax-distr 9548  ax-i2m1 9549  ax-1ne0 9550  ax-1rid 9551  ax-rnegex 9552  ax-rrecex 9553  ax-cnre 9554  ax-pre-lttri 9555  ax-pre-lttrn 9556  ax-pre-ltadd 9557  ax-pre-mulgt0 9558  ax-pre-sup 9559
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 972  df-3an 973  df-tru 1401  df-ex 1618  df-nf 1622  df-sb 1745  df-eu 2288  df-mo 2289  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2651  df-nel 2652  df-ral 2809  df-rex 2810  df-reu 2811  df-rmo 2812  df-rab 2813  df-v 3108  df-sbc 3325  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-nul 3784  df-if 3930  df-pw 4001  df-sn 4017  df-pr 4019  df-op 4023  df-uni 4236  df-br 4440  df-opab 4498  df-mpt 4499  df-id 4784  df-po 4789  df-so 4790  df-xp 4994  df-rel 4995  df-cnv 4996  df-co 4997  df-dm 4998  df-rn 4999  df-res 5000  df-ima 5001  df-iota 5534  df-fun 5572  df-fn 5573  df-f 5574  df-f1 5575  df-fo 5576  df-f1o 5577  df-fv 5578  df-riota 6232  df-ov 6273  df-oprab 6274  df-mpt2 6275  df-er 7303  df-en 7510  df-dom 7511  df-sdom 7512  df-sup 7893  df-pnf 9619  df-mnf 9620  df-xr 9621  df-ltxr 9622  df-le 9623  df-sub 9798  df-neg 9799
This theorem is referenced by:  supmul1  10503  supmullem1  10504  supmul  10506  suprubii  10509  suprzcl  10938  rpnnen1lem5  11213  supicc  11671  supiccub  11672  flval3  11932  fseqsupubi  12070  sqrlem4  13161  sqrlem7  13164  isercolllem2  13570  climsup  13574  fsumcvg3  13633  supcvg  13749  mertenslem1  13775  mertenslem2  13776  ruclem12  14058  pgpssslw  16833  icccmplem2  21494  icccmplem3  21495  reconnlem2  21498  evth  21625  ivthlem2  22030  ivthlem3  22031  mbflimsup  22239  itg2mono  22326  itg2cnlem1  22334  c1liplem1  22563  plyeq0lem  22773  esumpcvgval  28307  erdszelem8  28906  supaddc  30281  supadd  30282  itg2addnclem2  30307  ftc1anclem7  30336  ftc1anc  30338  totbndbnd  30525  prdsbnd  30529  ubelsupr  31635  suprnmpt  31691  upbdrech  31744  ssfiunibd  31748  fourierdlem20  32148  fourierdlem31  32159  fourierdlem64  32192  fourierdlem79  32207  suprubd  38428
  Copyright terms: Public domain W3C validator