MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  suprub Structured version   Unicode version

Theorem suprub 10505
Description: A member of a nonempty bounded set of reals is less than or equal to the set's upper bound. (Contributed by NM, 12-Oct-2004.)
Assertion
Ref Expression
suprub  |-  ( ( ( A  C_  RR  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  y  <_  x )  /\  B  e.  A )  ->  B  <_  sup ( A ,  RR ,  <  ) )
Distinct variable group:    x, y, A
Allowed substitution hints:    B( x, y)

Proof of Theorem suprub
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 ltso 9666 . . . . 5  |-  <  Or  RR
21a1i 11 . . . 4  |-  ( ( A  C_  RR  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  y  <_  x
)  ->  <  Or  RR )
3 sup3 10501 . . . 4  |-  ( ( A  C_  RR  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  y  <_  x
)  ->  E. x  e.  RR  ( A. y  e.  A  -.  x  <  y  /\  A. y  e.  RR  ( y  < 
x  ->  E. z  e.  A  y  <  z ) ) )
42, 3supub 7920 . . 3  |-  ( ( A  C_  RR  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  y  <_  x
)  ->  ( B  e.  A  ->  -.  sup ( A ,  RR ,  <  )  <  B ) )
54imp 429 . 2  |-  ( ( ( A  C_  RR  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  y  <_  x )  /\  B  e.  A )  ->  -.  sup ( A ,  RR ,  <  )  <  B
)
6 simp1 996 . . . 4  |-  ( ( A  C_  RR  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  y  <_  x
)  ->  A  C_  RR )
76sselda 3504 . . 3  |-  ( ( ( A  C_  RR  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  y  <_  x )  /\  B  e.  A )  ->  B  e.  RR )
8 suprcl 10504 . . . 4  |-  ( ( A  C_  RR  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  y  <_  x
)  ->  sup ( A ,  RR ,  <  )  e.  RR )
98adantr 465 . . 3  |-  ( ( ( A  C_  RR  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  y  <_  x )  /\  B  e.  A )  ->  sup ( A ,  RR ,  <  )  e.  RR )
107, 9lenltd 9731 . 2  |-  ( ( ( A  C_  RR  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  y  <_  x )  /\  B  e.  A )  ->  ( B  <_  sup ( A ,  RR ,  <  )  <->  -.  sup ( A ,  RR ,  <  )  <  B ) )
115, 10mpbird 232 1  |-  ( ( ( A  C_  RR  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  y  <_  x )  /\  B  e.  A )  ->  B  <_  sup ( A ,  RR ,  <  ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 369    /\ w3a 973    e. wcel 1767    =/= wne 2662   A.wral 2814   E.wrex 2815    C_ wss 3476   (/)c0 3785   class class class wbr 4447    Or wor 4799   supcsup 7901   RRcr 9492    < clt 9629    <_ cle 9630
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6577  ax-resscn 9550  ax-1cn 9551  ax-icn 9552  ax-addcl 9553  ax-addrcl 9554  ax-mulcl 9555  ax-mulrcl 9556  ax-mulcom 9557  ax-addass 9558  ax-mulass 9559  ax-distr 9560  ax-i2m1 9561  ax-1ne0 9562  ax-1rid 9563  ax-rnegex 9564  ax-rrecex 9565  ax-cnre 9566  ax-pre-lttri 9567  ax-pre-lttrn 9568  ax-pre-ltadd 9569  ax-pre-mulgt0 9570  ax-pre-sup 9571
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2819  df-rex 2820  df-reu 2821  df-rmo 2822  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-op 4034  df-uni 4246  df-br 4448  df-opab 4506  df-mpt 4507  df-id 4795  df-po 4800  df-so 4801  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5551  df-fun 5590  df-fn 5591  df-f 5592  df-f1 5593  df-fo 5594  df-f1o 5595  df-fv 5596  df-riota 6246  df-ov 6288  df-oprab 6289  df-mpt2 6290  df-er 7312  df-en 7518  df-dom 7519  df-sdom 7520  df-sup 7902  df-pnf 9631  df-mnf 9632  df-xr 9633  df-ltxr 9634  df-le 9635  df-sub 9808  df-neg 9809
This theorem is referenced by:  supmul1  10509  supmullem1  10510  supmul  10512  suprubii  10515  suprzcl  10941  rpnnen1lem5  11213  supicc  11669  supiccub  11670  flval3  11920  fseqsupubi  12057  sqrlem4  13045  sqrlem7  13048  isercolllem2  13454  climsup  13458  fsumcvg3  13517  supcvg  13633  mertenslem1  13659  mertenslem2  13660  ruclem12  13838  pgpssslw  16449  icccmplem2  21155  icccmplem3  21156  reconnlem2  21159  evth  21286  ivthlem2  21691  ivthlem3  21692  mbflimsup  21900  itg2mono  21987  itg2cnlem1  21995  c1liplem1  22224  plyeq0lem  22434  esumpcvgval  27835  erdszelem8  28393  supaddc  29894  supadd  29895  itg2addnclem2  29920  ftc1anclem7  29949  ftc1anc  29951  totbndbnd  30115  prdsbnd  30119  ubelsupr  31200  suprnmpt  31256  upbdrech  31309  ssfiunibd  31313  fourierdlem20  31654  fourierdlem31  31665  fourierdlem64  31698  fourierdlem79  31713
  Copyright terms: Public domain W3C validator