MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  suprcl Structured version   Unicode version

Theorem suprcl 10393
Description: Closure of supremum of a nonempty bounded set of reals. (Contributed by NM, 12-Oct-2004.)
Assertion
Ref Expression
suprcl  |-  ( ( A  C_  RR  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  y  <_  x
)  ->  sup ( A ,  RR ,  <  )  e.  RR )
Distinct variable group:    x, y, A

Proof of Theorem suprcl
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 ltso 9558 . . 3  |-  <  Or  RR
21a1i 11 . 2  |-  ( ( A  C_  RR  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  y  <_  x
)  ->  <  Or  RR )
3 sup3 10390 . 2  |-  ( ( A  C_  RR  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  y  <_  x
)  ->  E. x  e.  RR  ( A. y  e.  A  -.  x  <  y  /\  A. y  e.  RR  ( y  < 
x  ->  E. z  e.  A  y  <  z ) ) )
42, 3supcl 7811 1  |-  ( ( A  C_  RR  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  y  <_  x
)  ->  sup ( A ,  RR ,  <  )  e.  RR )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ w3a 965    e. wcel 1758    =/= wne 2644   A.wral 2795   E.wrex 2796    C_ wss 3428   (/)c0 3737   class class class wbr 4392    Or wor 4740   supcsup 7793   RRcr 9384    < clt 9521    <_ cle 9522
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1952  ax-ext 2430  ax-sep 4513  ax-nul 4521  ax-pow 4570  ax-pr 4631  ax-un 6474  ax-resscn 9442  ax-1cn 9443  ax-icn 9444  ax-addcl 9445  ax-addrcl 9446  ax-mulcl 9447  ax-mulrcl 9448  ax-mulcom 9449  ax-addass 9450  ax-mulass 9451  ax-distr 9452  ax-i2m1 9453  ax-1ne0 9454  ax-1rid 9455  ax-rnegex 9456  ax-rrecex 9457  ax-cnre 9458  ax-pre-lttri 9459  ax-pre-lttrn 9460  ax-pre-ltadd 9461  ax-pre-mulgt0 9462  ax-pre-sup 9463
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2264  df-mo 2265  df-clab 2437  df-cleq 2443  df-clel 2446  df-nfc 2601  df-ne 2646  df-nel 2647  df-ral 2800  df-rex 2801  df-reu 2802  df-rmo 2803  df-rab 2804  df-v 3072  df-sbc 3287  df-csb 3389  df-dif 3431  df-un 3433  df-in 3435  df-ss 3442  df-nul 3738  df-if 3892  df-pw 3962  df-sn 3978  df-pr 3980  df-op 3984  df-uni 4192  df-br 4393  df-opab 4451  df-mpt 4452  df-id 4736  df-po 4741  df-so 4742  df-xp 4946  df-rel 4947  df-cnv 4948  df-co 4949  df-dm 4950  df-rn 4951  df-res 4952  df-ima 4953  df-iota 5481  df-fun 5520  df-fn 5521  df-f 5522  df-f1 5523  df-fo 5524  df-f1o 5525  df-fv 5526  df-riota 6153  df-ov 6195  df-oprab 6196  df-mpt2 6197  df-er 7203  df-en 7413  df-dom 7414  df-sdom 7415  df-sup 7794  df-pnf 9523  df-mnf 9524  df-xr 9525  df-ltxr 9526  df-le 9527  df-sub 9700  df-neg 9701
This theorem is referenced by:  suprub  10394  suprleub  10397  supmul1  10398  supmullem1  10399  supmullem2  10400  supmul  10401  suprclii  10403  infmrcl  10412  suprzcl  10824  supminf  11045  rpnnen1lem4  11085  supxrre  11393  supxrbnd  11394  supicc  11536  flval3  11766  sqrlem4  12839  climsup  13251  supcvg  13422  mertenslem1  13448  ruclem12  13627  prmreclem6  14086  icccmplem2  20518  icccmplem3  20519  reconnlem2  20522  evth  20649  ivthlem2  21054  ivthlem3  21055  ioombl1lem4  21160  mbfsup  21260  mbflimsup  21262  itg2monolem1  21346  itg2mono  21349  itg2cnlem1  21357  c1liplem1  21586  nmcexi  25567  rge0scvg  26515  supaddc  28557  supadd  28558  ismblfin  28572  itg2addnclem2  28584  ftc1anclem7  28613  ftc1anc  28615  ubelsupr  29882
  Copyright terms: Public domain W3C validator