Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  suppss2fOLD Structured version   Visualization version   Unicode version

Theorem suppss2fOLD 28313
Description: Show that the support of a function is contained in a set. (Contributed by Thierry Arnoux, 22-Jun-2017.) Obsolete version of suppss2f 28314 as of 1-Sep-2020. (New usage is discouraged.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
suppss2f.p  |-  F/ k
ph
suppss2f.a  |-  F/_ k A
suppss2f.w  |-  F/_ k W
suppss2f.n  |-  ( (
ph  /\  k  e.  ( A  \  W ) )  ->  B  =  Z )
Assertion
Ref Expression
suppss2fOLD  |-  ( ph  ->  ( `' ( k  e.  A  |->  B )
" ( _V  \  { Z } ) ) 
C_  W )
Distinct variable group:    k, Z
Allowed substitution hints:    ph( k)    A( k)    B( k)    W( k)

Proof of Theorem suppss2fOLD
Dummy variable  l is distinct from all other variables.
StepHypRef Expression
1 eqid 2471 . . 3  |-  ( k  e.  A  |->  B )  =  ( k  e.  A  |->  B )
21mptpreima 5335 . 2  |-  ( `' ( k  e.  A  |->  B ) " ( _V  \  { Z }
) )  =  {
k  e.  A  |  B  e.  ( _V  \  { Z } ) }
3 suppss2f.a . . . 4  |-  F/_ k A
4 nfcv 2612 . . . 4  |-  F/_ l A
5 nfv 1769 . . . 4  |-  F/ l  B  e.  ( _V 
\  { Z }
)
6 nfcsb1v 3365 . . . . 5  |-  F/_ k [_ l  /  k ]_ B
76nfel1 2626 . . . 4  |-  F/ k
[_ l  /  k ]_ B  e.  ( _V  \  { Z }
)
8 csbeq1a 3358 . . . . 5  |-  ( k  =  l  ->  B  =  [_ l  /  k ]_ B )
98eleq1d 2533 . . . 4  |-  ( k  =  l  ->  ( B  e.  ( _V  \  { Z } )  <->  [_ l  /  k ]_ B  e.  ( _V  \  { Z }
) ) )
103, 4, 5, 7, 9cbvrab 3029 . . 3  |-  { k  e.  A  |  B  e.  ( _V  \  { Z } ) }  =  { l  e.  A  |  [_ l  /  k ]_ B  e.  ( _V  \  { Z }
) }
11 eldifsni 4089 . . . . . 6  |-  ( [_ l  /  k ]_ B  e.  ( _V  \  { Z } )  ->  [_ l  /  k ]_ B  =/=  Z )
12 eldif 3400 . . . . . . . . 9  |-  ( l  e.  ( A  \  W )  <->  ( l  e.  A  /\  -.  l  e.  W ) )
13 suppss2f.n . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  ( A  \  W ) )  ->  B  =  Z )
1413sbt 2268 . . . . . . . . . 10  |-  [ l  /  k ] ( ( ph  /\  k  e.  ( A  \  W
) )  ->  B  =  Z )
15 sbim 2244 . . . . . . . . . . 11  |-  ( [ l  /  k ] ( ( ph  /\  k  e.  ( A  \  W ) )  ->  B  =  Z )  <->  ( [ l  /  k ] ( ph  /\  k  e.  ( A  \  W ) )  ->  [ l  /  k ] B  =  Z
) )
16 sban 2248 . . . . . . . . . . . . 13  |-  ( [ l  /  k ] ( ph  /\  k  e.  ( A  \  W
) )  <->  ( [
l  /  k ]
ph  /\  [ l  /  k ] k  e.  ( A  \  W ) ) )
17 suppss2f.p . . . . . . . . . . . . . . 15  |-  F/ k
ph
1817sbf 2229 . . . . . . . . . . . . . 14  |-  ( [ l  /  k ]
ph 
<-> 
ph )
19 suppss2f.w . . . . . . . . . . . . . . . 16  |-  F/_ k W
203, 19nfdif 3543 . . . . . . . . . . . . . . 15  |-  F/_ k
( A  \  W
)
2120clelsb3f 28195 . . . . . . . . . . . . . 14  |-  ( [ l  /  k ] k  e.  ( A 
\  W )  <->  l  e.  ( A  \  W ) )
2218, 21anbi12i 711 . . . . . . . . . . . . 13  |-  ( ( [ l  /  k ] ph  /\  [ l  /  k ] k  e.  ( A  \  W ) )  <->  ( ph  /\  l  e.  ( A 
\  W ) ) )
2316, 22bitri 257 . . . . . . . . . . . 12  |-  ( [ l  /  k ] ( ph  /\  k  e.  ( A  \  W
) )  <->  ( ph  /\  l  e.  ( A 
\  W ) ) )
24 sbsbc 3259 . . . . . . . . . . . . 13  |-  ( [ l  /  k ] B  =  Z  <->  [. l  / 
k ]. B  =  Z )
25 vex 3034 . . . . . . . . . . . . . 14  |-  l  e. 
_V
26 sbceq1g 3781 . . . . . . . . . . . . . 14  |-  ( l  e.  _V  ->  ( [. l  /  k ]. B  =  Z  <->  [_ l  /  k ]_ B  =  Z )
)
2725, 26ax-mp 5 . . . . . . . . . . . . 13  |-  ( [. l  /  k ]. B  =  Z  <->  [_ l  /  k ]_ B  =  Z
)
2824, 27bitri 257 . . . . . . . . . . . 12  |-  ( [ l  /  k ] B  =  Z  <->  [_ l  / 
k ]_ B  =  Z )
2923, 28imbi12i 333 . . . . . . . . . . 11  |-  ( ( [ l  /  k ] ( ph  /\  k  e.  ( A  \  W ) )  ->  [ l  /  k ] B  =  Z
)  <->  ( ( ph  /\  l  e.  ( A 
\  W ) )  ->  [_ l  /  k ]_ B  =  Z
) )
3015, 29bitri 257 . . . . . . . . . 10  |-  ( [ l  /  k ] ( ( ph  /\  k  e.  ( A  \  W ) )  ->  B  =  Z )  <->  ( ( ph  /\  l  e.  ( A  \  W
) )  ->  [_ l  /  k ]_ B  =  Z ) )
3114, 30mpbi 213 . . . . . . . . 9  |-  ( (
ph  /\  l  e.  ( A  \  W ) )  ->  [_ l  / 
k ]_ B  =  Z )
3212, 31sylan2br 484 . . . . . . . 8  |-  ( (
ph  /\  ( l  e.  A  /\  -.  l  e.  W ) )  ->  [_ l  /  k ]_ B  =  Z
)
3332expr 626 . . . . . . 7  |-  ( (
ph  /\  l  e.  A )  ->  ( -.  l  e.  W  ->  [_ l  /  k ]_ B  =  Z
) )
3433necon1ad 2660 . . . . . 6  |-  ( (
ph  /\  l  e.  A )  ->  ( [_ l  /  k ]_ B  =/=  Z  ->  l  e.  W ) )
3511, 34syl5 32 . . . . 5  |-  ( (
ph  /\  l  e.  A )  ->  ( [_ l  /  k ]_ B  e.  ( _V  \  { Z }
)  ->  l  e.  W ) )
3635ss2rabdv 3496 . . . 4  |-  ( ph  ->  { l  e.  A  |  [_ l  /  k ]_ B  e.  ( _V  \  { Z }
) }  C_  { l  e.  A  |  l  e.  W } )
37 dfin5 3398 . . . . 5  |-  ( A  i^i  W )  =  { l  e.  A  |  l  e.  W }
38 inss2 3644 . . . . 5  |-  ( A  i^i  W )  C_  W
3937, 38eqsstr3i 3449 . . . 4  |-  { l  e.  A  |  l  e.  W }  C_  W
4036, 39syl6ss 3430 . . 3  |-  ( ph  ->  { l  e.  A  |  [_ l  /  k ]_ B  e.  ( _V  \  { Z }
) }  C_  W
)
4110, 40syl5eqss 3462 . 2  |-  ( ph  ->  { k  e.  A  |  B  e.  ( _V  \  { Z }
) }  C_  W
)
422, 41syl5eqss 3462 1  |-  ( ph  ->  ( `' ( k  e.  A  |->  B )
" ( _V  \  { Z } ) ) 
C_  W )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 189    /\ wa 376    = wceq 1452   F/wnf 1675   [wsb 1805    e. wcel 1904   F/_wnfc 2599    =/= wne 2641   {crab 2760   _Vcvv 3031   [.wsbc 3255   [_csb 3349    \ cdif 3387    i^i cin 3389    C_ wss 3390   {csn 3959    |-> cmpt 4454   `'ccnv 4838   "cima 4842
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1677  ax-4 1690  ax-5 1766  ax-6 1813  ax-7 1859  ax-9 1913  ax-10 1932  ax-11 1937  ax-12 1950  ax-13 2104  ax-ext 2451  ax-sep 4518  ax-nul 4527  ax-pr 4639
This theorem depends on definitions:  df-bi 190  df-or 377  df-an 378  df-3an 1009  df-tru 1455  df-ex 1672  df-nf 1676  df-sb 1806  df-eu 2323  df-mo 2324  df-clab 2458  df-cleq 2464  df-clel 2467  df-nfc 2601  df-ne 2643  df-ral 2761  df-rex 2762  df-rab 2765  df-v 3033  df-sbc 3256  df-csb 3350  df-dif 3393  df-un 3395  df-in 3397  df-ss 3404  df-nul 3723  df-if 3873  df-sn 3960  df-pr 3962  df-op 3966  df-br 4396  df-opab 4455  df-mpt 4456  df-xp 4845  df-rel 4846  df-cnv 4847  df-dm 4849  df-rn 4850  df-res 4851  df-ima 4852
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator