Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  suppss2f Structured version   Unicode version

Theorem suppss2f 26132
Description: Show that the support of a function is contained in a set. (Contributed by Thierry Arnoux, 22-Jun-2017.)
Hypotheses
Ref Expression
suppss2f.p  |-  F/ k
ph
suppss2f.a  |-  F/_ k A
suppss2f.w  |-  F/_ k W
suppss2f.n  |-  ( (
ph  /\  k  e.  ( A  \  W ) )  ->  B  =  Z )
Assertion
Ref Expression
suppss2f  |-  ( ph  ->  ( `' ( k  e.  A  |->  B )
" ( _V  \  { Z } ) ) 
C_  W )
Distinct variable group:    k, Z
Allowed substitution hints:    ph( k)    A( k)    B( k)    W( k)

Proof of Theorem suppss2f
Dummy variable  l is distinct from all other variables.
StepHypRef Expression
1 eqid 2454 . . 3  |-  ( k  e.  A  |->  B )  =  ( k  e.  A  |->  B )
21mptpreima 5442 . 2  |-  ( `' ( k  e.  A  |->  B ) " ( _V  \  { Z }
) )  =  {
k  e.  A  |  B  e.  ( _V  \  { Z } ) }
3 suppss2f.a . . . 4  |-  F/_ k A
4 nfcv 2616 . . . 4  |-  F/_ l A
5 nfv 1674 . . . 4  |-  F/ l  B  e.  ( _V 
\  { Z }
)
6 nfcsb1v 3414 . . . . 5  |-  F/_ k [_ l  /  k ]_ B
76nfel1 2632 . . . 4  |-  F/ k
[_ l  /  k ]_ B  e.  ( _V  \  { Z }
)
8 csbeq1a 3407 . . . . 5  |-  ( k  =  l  ->  B  =  [_ l  /  k ]_ B )
98eleq1d 2523 . . . 4  |-  ( k  =  l  ->  ( B  e.  ( _V  \  { Z } )  <->  [_ l  /  k ]_ B  e.  ( _V  \  { Z }
) ) )
103, 4, 5, 7, 9cbvrab 3076 . . 3  |-  { k  e.  A  |  B  e.  ( _V  \  { Z } ) }  =  { l  e.  A  |  [_ l  /  k ]_ B  e.  ( _V  \  { Z }
) }
11 eldifsni 4112 . . . . . 6  |-  ( [_ l  /  k ]_ B  e.  ( _V  \  { Z } )  ->  [_ l  /  k ]_ B  =/=  Z )
12 eldif 3449 . . . . . . . . 9  |-  ( l  e.  ( A  \  W )  <->  ( l  e.  A  /\  -.  l  e.  W ) )
13 suppss2f.n . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  ( A  \  W ) )  ->  B  =  Z )
1413sbt 2127 . . . . . . . . . 10  |-  [ l  /  k ] ( ( ph  /\  k  e.  ( A  \  W
) )  ->  B  =  Z )
15 sbim 2097 . . . . . . . . . . 11  |-  ( [ l  /  k ] ( ( ph  /\  k  e.  ( A  \  W ) )  ->  B  =  Z )  <->  ( [ l  /  k ] ( ph  /\  k  e.  ( A  \  W ) )  ->  [ l  /  k ] B  =  Z
) )
16 sban 2101 . . . . . . . . . . . . 13  |-  ( [ l  /  k ] ( ph  /\  k  e.  ( A  \  W
) )  <->  ( [
l  /  k ]
ph  /\  [ l  /  k ] k  e.  ( A  \  W ) ) )
17 suppss2f.p . . . . . . . . . . . . . . 15  |-  F/ k
ph
1817sbf 2081 . . . . . . . . . . . . . 14  |-  ( [ l  /  k ]
ph 
<-> 
ph )
19 suppss2f.w . . . . . . . . . . . . . . . 16  |-  F/_ k W
203, 19nfdif 3588 . . . . . . . . . . . . . . 15  |-  F/_ k
( A  \  W
)
2120clelsb3f 26043 . . . . . . . . . . . . . 14  |-  ( [ l  /  k ] k  e.  ( A 
\  W )  <->  l  e.  ( A  \  W ) )
2218, 21anbi12i 697 . . . . . . . . . . . . 13  |-  ( ( [ l  /  k ] ph  /\  [ l  /  k ] k  e.  ( A  \  W ) )  <->  ( ph  /\  l  e.  ( A 
\  W ) ) )
2316, 22bitri 249 . . . . . . . . . . . 12  |-  ( [ l  /  k ] ( ph  /\  k  e.  ( A  \  W
) )  <->  ( ph  /\  l  e.  ( A 
\  W ) ) )
24 sbsbc 3298 . . . . . . . . . . . . 13  |-  ( [ l  /  k ] B  =  Z  <->  [. l  / 
k ]. B  =  Z )
25 vex 3081 . . . . . . . . . . . . . 14  |-  l  e. 
_V
26 sbceq1g 3793 . . . . . . . . . . . . . 14  |-  ( l  e.  _V  ->  ( [. l  /  k ]. B  =  Z  <->  [_ l  /  k ]_ B  =  Z )
)
2725, 26ax-mp 5 . . . . . . . . . . . . 13  |-  ( [. l  /  k ]. B  =  Z  <->  [_ l  /  k ]_ B  =  Z
)
2824, 27bitri 249 . . . . . . . . . . . 12  |-  ( [ l  /  k ] B  =  Z  <->  [_ l  / 
k ]_ B  =  Z )
2923, 28imbi12i 326 . . . . . . . . . . 11  |-  ( ( [ l  /  k ] ( ph  /\  k  e.  ( A  \  W ) )  ->  [ l  /  k ] B  =  Z
)  <->  ( ( ph  /\  l  e.  ( A 
\  W ) )  ->  [_ l  /  k ]_ B  =  Z
) )
3015, 29bitri 249 . . . . . . . . . 10  |-  ( [ l  /  k ] ( ( ph  /\  k  e.  ( A  \  W ) )  ->  B  =  Z )  <->  ( ( ph  /\  l  e.  ( A  \  W
) )  ->  [_ l  /  k ]_ B  =  Z ) )
3114, 30mpbi 208 . . . . . . . . 9  |-  ( (
ph  /\  l  e.  ( A  \  W ) )  ->  [_ l  / 
k ]_ B  =  Z )
3212, 31sylan2br 476 . . . . . . . 8  |-  ( (
ph  /\  ( l  e.  A  /\  -.  l  e.  W ) )  ->  [_ l  /  k ]_ B  =  Z
)
3332expr 615 . . . . . . 7  |-  ( (
ph  /\  l  e.  A )  ->  ( -.  l  e.  W  ->  [_ l  /  k ]_ B  =  Z
) )
3433necon1ad 2668 . . . . . 6  |-  ( (
ph  /\  l  e.  A )  ->  ( [_ l  /  k ]_ B  =/=  Z  ->  l  e.  W ) )
3511, 34syl5 32 . . . . 5  |-  ( (
ph  /\  l  e.  A )  ->  ( [_ l  /  k ]_ B  e.  ( _V  \  { Z }
)  ->  l  e.  W ) )
3635ss2rabdv 3544 . . . 4  |-  ( ph  ->  { l  e.  A  |  [_ l  /  k ]_ B  e.  ( _V  \  { Z }
) }  C_  { l  e.  A  |  l  e.  W } )
37 dfin5 3447 . . . . 5  |-  ( A  i^i  W )  =  { l  e.  A  |  l  e.  W }
38 inss2 3682 . . . . 5  |-  ( A  i^i  W )  C_  W
3937, 38eqsstr3i 3498 . . . 4  |-  { l  e.  A  |  l  e.  W }  C_  W
4036, 39syl6ss 3479 . . 3  |-  ( ph  ->  { l  e.  A  |  [_ l  /  k ]_ B  e.  ( _V  \  { Z }
) }  C_  W
)
4110, 40syl5eqss 3511 . 2  |-  ( ph  ->  { k  e.  A  |  B  e.  ( _V  \  { Z }
) }  C_  W
)
422, 41syl5eqss 3511 1  |-  ( ph  ->  ( `' ( k  e.  A  |->  B )
" ( _V  \  { Z } ) ) 
C_  W )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1370   F/wnf 1590   [wsb 1702    e. wcel 1758   F/_wnfc 2602    =/= wne 2648   {crab 2803   _Vcvv 3078   [.wsbc 3294   [_csb 3398    \ cdif 3436    i^i cin 3438    C_ wss 3439   {csn 3988    |-> cmpt 4461   `'ccnv 4950   "cima 4954
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1955  ax-ext 2432  ax-sep 4524  ax-nul 4532  ax-pr 4642
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2266  df-mo 2267  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2650  df-ral 2804  df-rex 2805  df-rab 2808  df-v 3080  df-sbc 3295  df-csb 3399  df-dif 3442  df-un 3444  df-in 3446  df-ss 3453  df-nul 3749  df-if 3903  df-sn 3989  df-pr 3991  df-op 3995  df-br 4404  df-opab 4462  df-mpt 4463  df-xp 4957  df-rel 4958  df-cnv 4959  df-dm 4961  df-rn 4962  df-res 4963  df-ima 4964
This theorem is referenced by:  esumss  26689
  Copyright terms: Public domain W3C validator