MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  supnfcls Structured version   Unicode version

Theorem supnfcls 19720
Description: The filter of supersets of  X  \  U does not cluster at any point of the open set  U. (Contributed by Mario Carneiro, 11-Apr-2015.) (Revised by Mario Carneiro, 26-Aug-2015.)
Assertion
Ref Expression
supnfcls  |-  ( ( J  e.  (TopOn `  X )  /\  U  e.  J  /\  A  e.  U )  ->  -.  A  e.  ( J  fClus  { x  e.  ~P X  |  ( X  \  U )  C_  x } ) )
Distinct variable groups:    x, J    x, X    x, U
Allowed substitution hint:    A( x)

Proof of Theorem supnfcls
StepHypRef Expression
1 disjdif 3854 . 2  |-  ( U  i^i  ( X  \  U ) )  =  (/)
2 simpr 461 . . . . 5  |-  ( ( ( J  e.  (TopOn `  X )  /\  U  e.  J  /\  A  e.  U )  /\  A  e.  ( J  fClus  { x  e.  ~P X  |  ( X  \  U ) 
C_  x } ) )  ->  A  e.  ( J  fClus  { x  e.  ~P X  |  ( X  \  U ) 
C_  x } ) )
3 simpl2 992 . . . . 5  |-  ( ( ( J  e.  (TopOn `  X )  /\  U  e.  J  /\  A  e.  U )  /\  A  e.  ( J  fClus  { x  e.  ~P X  |  ( X  \  U ) 
C_  x } ) )  ->  U  e.  J )
4 simpl3 993 . . . . 5  |-  ( ( ( J  e.  (TopOn `  X )  /\  U  e.  J  /\  A  e.  U )  /\  A  e.  ( J  fClus  { x  e.  ~P X  |  ( X  \  U ) 
C_  x } ) )  ->  A  e.  U )
5 difss 3586 . . . . . . 7  |-  ( X 
\  U )  C_  X
6 simpl1 991 . . . . . . . 8  |-  ( ( ( J  e.  (TopOn `  X )  /\  U  e.  J  /\  A  e.  U )  /\  A  e.  ( J  fClus  { x  e.  ~P X  |  ( X  \  U ) 
C_  x } ) )  ->  J  e.  (TopOn `  X ) )
7 toponmax 18660 . . . . . . . 8  |-  ( J  e.  (TopOn `  X
)  ->  X  e.  J )
8 elpw2g 4558 . . . . . . . 8  |-  ( X  e.  J  ->  (
( X  \  U
)  e.  ~P X  <->  ( X  \  U ) 
C_  X ) )
96, 7, 83syl 20 . . . . . . 7  |-  ( ( ( J  e.  (TopOn `  X )  /\  U  e.  J  /\  A  e.  U )  /\  A  e.  ( J  fClus  { x  e.  ~P X  |  ( X  \  U ) 
C_  x } ) )  ->  ( ( X  \  U )  e. 
~P X  <->  ( X  \  U )  C_  X
) )
105, 9mpbiri 233 . . . . . 6  |-  ( ( ( J  e.  (TopOn `  X )  /\  U  e.  J  /\  A  e.  U )  /\  A  e.  ( J  fClus  { x  e.  ~P X  |  ( X  \  U ) 
C_  x } ) )  ->  ( X  \  U )  e.  ~P X )
11 ssid 3478 . . . . . . 7  |-  ( X 
\  U )  C_  ( X  \  U )
1211a1i 11 . . . . . 6  |-  ( ( ( J  e.  (TopOn `  X )  /\  U  e.  J  /\  A  e.  U )  /\  A  e.  ( J  fClus  { x  e.  ~P X  |  ( X  \  U ) 
C_  x } ) )  ->  ( X  \  U )  C_  ( X  \  U ) )
13 sseq2 3481 . . . . . . 7  |-  ( x  =  ( X  \  U )  ->  (
( X  \  U
)  C_  x  <->  ( X  \  U )  C_  ( X  \  U ) ) )
1413elrab 3218 . . . . . 6  |-  ( ( X  \  U )  e.  { x  e. 
~P X  |  ( X  \  U ) 
C_  x }  <->  ( ( X  \  U )  e. 
~P X  /\  ( X  \  U )  C_  ( X  \  U ) ) )
1510, 12, 14sylanbrc 664 . . . . 5  |-  ( ( ( J  e.  (TopOn `  X )  /\  U  e.  J  /\  A  e.  U )  /\  A  e.  ( J  fClus  { x  e.  ~P X  |  ( X  \  U ) 
C_  x } ) )  ->  ( X  \  U )  e.  {
x  e.  ~P X  |  ( X  \  U )  C_  x } )
16 fclsopni 19715 . . . . 5  |-  ( ( A  e.  ( J 
fClus  { x  e.  ~P X  |  ( X  \  U )  C_  x } )  /\  ( U  e.  J  /\  A  e.  U  /\  ( X  \  U )  e.  { x  e. 
~P X  |  ( X  \  U ) 
C_  x } ) )  ->  ( U  i^i  ( X  \  U
) )  =/=  (/) )
172, 3, 4, 15, 16syl13anc 1221 . . . 4  |-  ( ( ( J  e.  (TopOn `  X )  /\  U  e.  J  /\  A  e.  U )  /\  A  e.  ( J  fClus  { x  e.  ~P X  |  ( X  \  U ) 
C_  x } ) )  ->  ( U  i^i  ( X  \  U
) )  =/=  (/) )
1817ex 434 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  U  e.  J  /\  A  e.  U )  ->  ( A  e.  ( J  fClus  { x  e.  ~P X  |  ( X  \  U )  C_  x } )  ->  ( U  i^i  ( X  \  U ) )  =/=  (/) ) )
1918necon2bd 2664 . 2  |-  ( ( J  e.  (TopOn `  X )  /\  U  e.  J  /\  A  e.  U )  ->  (
( U  i^i  ( X  \  U ) )  =  (/)  ->  -.  A  e.  ( J  fClus  { x  e.  ~P X  |  ( X  \  U ) 
C_  x } ) ) )
201, 19mpi 17 1  |-  ( ( J  e.  (TopOn `  X )  /\  U  e.  J  /\  A  e.  U )  ->  -.  A  e.  ( J  fClus  { x  e.  ~P X  |  ( X  \  U )  C_  x } ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 965    = wceq 1370    e. wcel 1758    =/= wne 2645   {crab 2800    \ cdif 3428    i^i cin 3430    C_ wss 3431   (/)c0 3740   ~Pcpw 3963   ` cfv 5521  (class class class)co 6195  TopOnctopon 18626    fClus cfcls 19636
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1954  ax-ext 2431  ax-rep 4506  ax-sep 4516  ax-nul 4524  ax-pow 4573  ax-pr 4634  ax-un 6477
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2265  df-mo 2266  df-clab 2438  df-cleq 2444  df-clel 2447  df-nfc 2602  df-ne 2647  df-nel 2648  df-ral 2801  df-rex 2802  df-reu 2803  df-rab 2805  df-v 3074  df-sbc 3289  df-csb 3391  df-dif 3434  df-un 3436  df-in 3438  df-ss 3445  df-nul 3741  df-if 3895  df-pw 3965  df-sn 3981  df-pr 3983  df-op 3987  df-uni 4195  df-int 4232  df-iun 4276  df-iin 4277  df-br 4396  df-opab 4454  df-mpt 4455  df-id 4739  df-xp 4949  df-rel 4950  df-cnv 4951  df-co 4952  df-dm 4953  df-rn 4954  df-res 4955  df-ima 4956  df-iota 5484  df-fun 5523  df-fn 5524  df-f 5525  df-f1 5526  df-fo 5527  df-f1o 5528  df-fv 5529  df-ov 6198  df-oprab 6199  df-mpt2 6200  df-fbas 17934  df-top 18630  df-topon 18633  df-cld 18750  df-ntr 18751  df-cls 18752  df-fil 19546  df-fcls 19641
This theorem is referenced by:  fclscf  19725
  Copyright terms: Public domain W3C validator