MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  supmul1 Unicode version

Theorem supmul1 9929
Description: The supremum function distributes over multiplication, in the sense that  A  x.  ( sup B )  =  sup ( A  x.  B
), where  A  x.  B is shorthand for  { A  x.  b  |  b  e.  B } and is defined as  C below. This is the simple version, with only one set argument; see supmul 9932 for the more general case with two set arguments. (Contributed by Mario Carneiro, 5-Jul-2013.)
Hypotheses
Ref Expression
supmul1.1  |-  C  =  { z  |  E. v  e.  B  z  =  ( A  x.  v ) }
supmul1.2  |-  ( ph  <->  ( ( A  e.  RR  /\  0  <_  A  /\  A. x  e.  B  0  <_  x )  /\  ( B  C_  RR  /\  B  =/=  (/)  /\  E. x  e.  RR  A. y  e.  B  y  <_  x
) ) )
Assertion
Ref Expression
supmul1  |-  ( ph  ->  ( A  x.  sup ( B ,  RR ,  <  ) )  =  sup ( C ,  RR ,  <  ) )
Distinct variable groups:    v, A, x, z    v, B, x, y, z    x, C
Allowed substitution hints:    ph( x, y, z, v)    A( y)    C( y, z, v)

Proof of Theorem supmul1
Dummy variables  b  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 2919 . . . . . . . 8  |-  w  e. 
_V
2 oveq2 6048 . . . . . . . . . . 11  |-  ( v  =  b  ->  ( A  x.  v )  =  ( A  x.  b ) )
32eqeq2d 2415 . . . . . . . . . 10  |-  ( v  =  b  ->  (
z  =  ( A  x.  v )  <->  z  =  ( A  x.  b
) ) )
43cbvrexv 2893 . . . . . . . . 9  |-  ( E. v  e.  B  z  =  ( A  x.  v )  <->  E. b  e.  B  z  =  ( A  x.  b
) )
5 eqeq1 2410 . . . . . . . . . 10  |-  ( z  =  w  ->  (
z  =  ( A  x.  b )  <->  w  =  ( A  x.  b
) ) )
65rexbidv 2687 . . . . . . . . 9  |-  ( z  =  w  ->  ( E. b  e.  B  z  =  ( A  x.  b )  <->  E. b  e.  B  w  =  ( A  x.  b
) ) )
74, 6syl5bb 249 . . . . . . . 8  |-  ( z  =  w  ->  ( E. v  e.  B  z  =  ( A  x.  v )  <->  E. b  e.  B  w  =  ( A  x.  b
) ) )
8 supmul1.1 . . . . . . . 8  |-  C  =  { z  |  E. v  e.  B  z  =  ( A  x.  v ) }
91, 7, 8elab2 3045 . . . . . . 7  |-  ( w  e.  C  <->  E. b  e.  B  w  =  ( A  x.  b
) )
10 supmul1.2 . . . . . . . . . . . . 13  |-  ( ph  <->  ( ( A  e.  RR  /\  0  <_  A  /\  A. x  e.  B  0  <_  x )  /\  ( B  C_  RR  /\  B  =/=  (/)  /\  E. x  e.  RR  A. y  e.  B  y  <_  x
) ) )
11 simpr 448 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  RR  /\  0  <_  A  /\  A. x  e.  B  0  <_  x )  /\  ( B  C_  RR  /\  B  =/=  (/)  /\  E. x  e.  RR  A. y  e.  B  y  <_  x
) )  ->  ( B  C_  RR  /\  B  =/=  (/)  /\  E. x  e.  RR  A. y  e.  B  y  <_  x
) )
1210, 11sylbi 188 . . . . . . . . . . . 12  |-  ( ph  ->  ( B  C_  RR  /\  B  =/=  (/)  /\  E. x  e.  RR  A. y  e.  B  y  <_  x ) )
1312simp1d 969 . . . . . . . . . . 11  |-  ( ph  ->  B  C_  RR )
1413sselda 3308 . . . . . . . . . 10  |-  ( (
ph  /\  b  e.  B )  ->  b  e.  RR )
15 suprcl 9924 . . . . . . . . . . . 12  |-  ( ( B  C_  RR  /\  B  =/=  (/)  /\  E. x  e.  RR  A. y  e.  B  y  <_  x
)  ->  sup ( B ,  RR ,  <  )  e.  RR )
1612, 15syl 16 . . . . . . . . . . 11  |-  ( ph  ->  sup ( B ,  RR ,  <  )  e.  RR )
1716adantr 452 . . . . . . . . . 10  |-  ( (
ph  /\  b  e.  B )  ->  sup ( B ,  RR ,  <  )  e.  RR )
18 simpl1 960 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  RR  /\  0  <_  A  /\  A. x  e.  B  0  <_  x )  /\  ( B  C_  RR  /\  B  =/=  (/)  /\  E. x  e.  RR  A. y  e.  B  y  <_  x
) )  ->  A  e.  RR )
1910, 18sylbi 188 . . . . . . . . . . . 12  |-  ( ph  ->  A  e.  RR )
20 simpl2 961 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  RR  /\  0  <_  A  /\  A. x  e.  B  0  <_  x )  /\  ( B  C_  RR  /\  B  =/=  (/)  /\  E. x  e.  RR  A. y  e.  B  y  <_  x
) )  ->  0  <_  A )
2110, 20sylbi 188 . . . . . . . . . . . 12  |-  ( ph  ->  0  <_  A )
2219, 21jca 519 . . . . . . . . . . 11  |-  ( ph  ->  ( A  e.  RR  /\  0  <_  A )
)
2322adantr 452 . . . . . . . . . 10  |-  ( (
ph  /\  b  e.  B )  ->  ( A  e.  RR  /\  0  <_  A ) )
24 suprub 9925 . . . . . . . . . . 11  |-  ( ( ( B  C_  RR  /\  B  =/=  (/)  /\  E. x  e.  RR  A. y  e.  B  y  <_  x )  /\  b  e.  B )  ->  b  <_  sup ( B ,  RR ,  <  ) )
2512, 24sylan 458 . . . . . . . . . 10  |-  ( (
ph  /\  b  e.  B )  ->  b  <_  sup ( B ,  RR ,  <  ) )
26 lemul2a 9821 . . . . . . . . . 10  |-  ( ( ( b  e.  RR  /\ 
sup ( B ,  RR ,  <  )  e.  RR  /\  ( A  e.  RR  /\  0  <_  A ) )  /\  b  <_  sup ( B ,  RR ,  <  ) )  ->  ( A  x.  b )  <_  ( A  x.  sup ( B ,  RR ,  <  ) ) )
2714, 17, 23, 25, 26syl31anc 1187 . . . . . . . . 9  |-  ( (
ph  /\  b  e.  B )  ->  ( A  x.  b )  <_  ( A  x.  sup ( B ,  RR ,  <  ) ) )
28 breq1 4175 . . . . . . . . 9  |-  ( w  =  ( A  x.  b )  ->  (
w  <_  ( A  x.  sup ( B ,  RR ,  <  ) )  <-> 
( A  x.  b
)  <_  ( A  x.  sup ( B ,  RR ,  <  ) ) ) )
2927, 28syl5ibrcom 214 . . . . . . . 8  |-  ( (
ph  /\  b  e.  B )  ->  (
w  =  ( A  x.  b )  ->  w  <_  ( A  x.  sup ( B ,  RR ,  <  ) ) ) )
3029rexlimdva 2790 . . . . . . 7  |-  ( ph  ->  ( E. b  e.  B  w  =  ( A  x.  b )  ->  w  <_  ( A  x.  sup ( B ,  RR ,  <  ) ) ) )
319, 30syl5bi 209 . . . . . 6  |-  ( ph  ->  ( w  e.  C  ->  w  <_  ( A  x.  sup ( B ,  RR ,  <  ) ) ) )
3231ralrimiv 2748 . . . . 5  |-  ( ph  ->  A. w  e.  C  w  <_  ( A  x.  sup ( B ,  RR ,  <  ) ) )
3319adantr 452 . . . . . . . . . . . 12  |-  ( (
ph  /\  b  e.  B )  ->  A  e.  RR )
3433, 14remulcld 9072 . . . . . . . . . . 11  |-  ( (
ph  /\  b  e.  B )  ->  ( A  x.  b )  e.  RR )
35 eleq1a 2473 . . . . . . . . . . 11  |-  ( ( A  x.  b )  e.  RR  ->  (
w  =  ( A  x.  b )  ->  w  e.  RR )
)
3634, 35syl 16 . . . . . . . . . 10  |-  ( (
ph  /\  b  e.  B )  ->  (
w  =  ( A  x.  b )  ->  w  e.  RR )
)
3736rexlimdva 2790 . . . . . . . . 9  |-  ( ph  ->  ( E. b  e.  B  w  =  ( A  x.  b )  ->  w  e.  RR ) )
389, 37syl5bi 209 . . . . . . . 8  |-  ( ph  ->  ( w  e.  C  ->  w  e.  RR ) )
3938ssrdv 3314 . . . . . . 7  |-  ( ph  ->  C  C_  RR )
40 simpr2 964 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  0  <_  A  /\  A. x  e.  B  0  <_  x )  /\  ( B  C_  RR  /\  B  =/=  (/)  /\  E. x  e.  RR  A. y  e.  B  y  <_  x
) )  ->  B  =/=  (/) )
4110, 40sylbi 188 . . . . . . . . 9  |-  ( ph  ->  B  =/=  (/) )
42 ovex 6065 . . . . . . . . . . 11  |-  ( A  x.  b )  e. 
_V
4342isseti 2922 . . . . . . . . . 10  |-  E. w  w  =  ( A  x.  b )
4443rgenw 2733 . . . . . . . . 9  |-  A. b  e.  B  E. w  w  =  ( A  x.  b )
45 r19.2z 3677 . . . . . . . . 9  |-  ( ( B  =/=  (/)  /\  A. b  e.  B  E. w  w  =  ( A  x.  b )
)  ->  E. b  e.  B  E. w  w  =  ( A  x.  b ) )
4641, 44, 45sylancl 644 . . . . . . . 8  |-  ( ph  ->  E. b  e.  B  E. w  w  =  ( A  x.  b
) )
479exbii 1589 . . . . . . . . 9  |-  ( E. w  w  e.  C  <->  E. w E. b  e.  B  w  =  ( A  x.  b ) )
48 n0 3597 . . . . . . . . 9  |-  ( C  =/=  (/)  <->  E. w  w  e.  C )
49 rexcom4 2935 . . . . . . . . 9  |-  ( E. b  e.  B  E. w  w  =  ( A  x.  b )  <->  E. w E. b  e.  B  w  =  ( A  x.  b ) )
5047, 48, 493bitr4i 269 . . . . . . . 8  |-  ( C  =/=  (/)  <->  E. b  e.  B  E. w  w  =  ( A  x.  b
) )
5146, 50sylibr 204 . . . . . . 7  |-  ( ph  ->  C  =/=  (/) )
5219, 16remulcld 9072 . . . . . . . 8  |-  ( ph  ->  ( A  x.  sup ( B ,  RR ,  <  ) )  e.  RR )
53 breq2 4176 . . . . . . . . . 10  |-  ( x  =  ( A  x.  sup ( B ,  RR ,  <  ) )  -> 
( w  <_  x  <->  w  <_  ( A  x.  sup ( B ,  RR ,  <  ) ) ) )
5453ralbidv 2686 . . . . . . . . 9  |-  ( x  =  ( A  x.  sup ( B ,  RR ,  <  ) )  -> 
( A. w  e.  C  w  <_  x  <->  A. w  e.  C  w  <_  ( A  x.  sup ( B ,  RR ,  <  ) ) ) )
5554rspcev 3012 . . . . . . . 8  |-  ( ( ( A  x.  sup ( B ,  RR ,  <  ) )  e.  RR  /\ 
A. w  e.  C  w  <_  ( A  x.  sup ( B ,  RR ,  <  ) ) )  ->  E. x  e.  RR  A. w  e.  C  w  <_  x )
5652, 32, 55syl2anc 643 . . . . . . 7  |-  ( ph  ->  E. x  e.  RR  A. w  e.  C  w  <_  x )
5739, 51, 563jca 1134 . . . . . 6  |-  ( ph  ->  ( C  C_  RR  /\  C  =/=  (/)  /\  E. x  e.  RR  A. w  e.  C  w  <_  x ) )
58 suprleub 9928 . . . . . 6  |-  ( ( ( C  C_  RR  /\  C  =/=  (/)  /\  E. x  e.  RR  A. w  e.  C  w  <_  x )  /\  ( A  x.  sup ( B ,  RR ,  <  ) )  e.  RR )  ->  ( sup ( C ,  RR ,  <  )  <_  ( A  x.  sup ( B ,  RR ,  <  ) )  <->  A. w  e.  C  w  <_  ( A  x.  sup ( B ,  RR ,  <  ) ) ) )
5957, 52, 58syl2anc 643 . . . . 5  |-  ( ph  ->  ( sup ( C ,  RR ,  <  )  <_  ( A  x.  sup ( B ,  RR ,  <  ) )  <->  A. w  e.  C  w  <_  ( A  x.  sup ( B ,  RR ,  <  ) ) ) )
6032, 59mpbird 224 . . . 4  |-  ( ph  ->  sup ( C ,  RR ,  <  )  <_ 
( A  x.  sup ( B ,  RR ,  <  ) ) )
61 simpr 448 . . . . . . 7  |-  ( (
ph  /\  sup ( C ,  RR ,  <  )  <  ( A  x.  sup ( B ,  RR ,  <  ) ) )  ->  sup ( C ,  RR ,  <  )  <  ( A  x.  sup ( B ,  RR ,  <  ) ) )
62 suprcl 9924 . . . . . . . . . 10  |-  ( ( C  C_  RR  /\  C  =/=  (/)  /\  E. x  e.  RR  A. w  e.  C  w  <_  x
)  ->  sup ( C ,  RR ,  <  )  e.  RR )
6357, 62syl 16 . . . . . . . . 9  |-  ( ph  ->  sup ( C ,  RR ,  <  )  e.  RR )
6463adantr 452 . . . . . . . 8  |-  ( (
ph  /\  sup ( C ,  RR ,  <  )  <  ( A  x.  sup ( B ,  RR ,  <  ) ) )  ->  sup ( C ,  RR ,  <  )  e.  RR )
6516adantr 452 . . . . . . . 8  |-  ( (
ph  /\  sup ( C ,  RR ,  <  )  <  ( A  x.  sup ( B ,  RR ,  <  ) ) )  ->  sup ( B ,  RR ,  <  )  e.  RR )
6619adantr 452 . . . . . . . 8  |-  ( (
ph  /\  sup ( C ,  RR ,  <  )  <  ( A  x.  sup ( B ,  RR ,  <  ) ) )  ->  A  e.  RR )
67 n0 3597 . . . . . . . . . . . 12  |-  ( B  =/=  (/)  <->  E. b  b  e.  B )
68 0re 9047 . . . . . . . . . . . . . . . 16  |-  0  e.  RR
6968a1i 11 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  b  e.  B )  ->  0  e.  RR )
70 simpl3 962 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  RR  /\  0  <_  A  /\  A. x  e.  B  0  <_  x )  /\  ( B  C_  RR  /\  B  =/=  (/)  /\  E. x  e.  RR  A. y  e.  B  y  <_  x
) )  ->  A. x  e.  B  0  <_  x )
7110, 70sylbi 188 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  A. x  e.  B 
0  <_  x )
72 breq2 4176 . . . . . . . . . . . . . . . . 17  |-  ( x  =  b  ->  (
0  <_  x  <->  0  <_  b ) )
7372rspccva 3011 . . . . . . . . . . . . . . . 16  |-  ( ( A. x  e.  B 
0  <_  x  /\  b  e.  B )  ->  0  <_  b )
7471, 73sylan 458 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  b  e.  B )  ->  0  <_  b )
7569, 14, 17, 74, 25letrd 9183 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  b  e.  B )  ->  0  <_  sup ( B ,  RR ,  <  ) )
7675ex 424 . . . . . . . . . . . . 13  |-  ( ph  ->  ( b  e.  B  ->  0  <_  sup ( B ,  RR ,  <  ) ) )
7776exlimdv 1643 . . . . . . . . . . . 12  |-  ( ph  ->  ( E. b  b  e.  B  ->  0  <_  sup ( B ,  RR ,  <  ) ) )
7867, 77syl5bi 209 . . . . . . . . . . 11  |-  ( ph  ->  ( B  =/=  (/)  ->  0  <_  sup ( B ,  RR ,  <  ) ) )
7941, 78mpd 15 . . . . . . . . . 10  |-  ( ph  ->  0  <_  sup ( B ,  RR ,  <  ) )
8079adantr 452 . . . . . . . . 9  |-  ( (
ph  /\  sup ( C ,  RR ,  <  )  <  ( A  x.  sup ( B ,  RR ,  <  ) ) )  ->  0  <_  sup ( B ,  RR ,  <  ) )
8168a1i 11 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  w  e.  C )  ->  0  e.  RR )
8238imp 419 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  w  e.  C )  ->  w  e.  RR )
8363adantr 452 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  w  e.  C )  ->  sup ( C ,  RR ,  <  )  e.  RR )
8421adantr 452 . . . . . . . . . . . . . . . . . . . . 21  |-  ( (
ph  /\  b  e.  B )  ->  0  <_  A )
8533, 14, 84, 74mulge0d 9559 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  b  e.  B )  ->  0  <_  ( A  x.  b
) )
86 breq2 4176 . . . . . . . . . . . . . . . . . . . 20  |-  ( w  =  ( A  x.  b )  ->  (
0  <_  w  <->  0  <_  ( A  x.  b ) ) )
8785, 86syl5ibrcom 214 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  b  e.  B )  ->  (
w  =  ( A  x.  b )  -> 
0  <_  w )
)
8887rexlimdva 2790 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( E. b  e.  B  w  =  ( A  x.  b )  ->  0  <_  w
) )
899, 88syl5bi 209 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( w  e.  C  ->  0  <_  w )
)
9089imp 419 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  w  e.  C )  ->  0  <_  w )
91 suprub 9925 . . . . . . . . . . . . . . . . 17  |-  ( ( ( C  C_  RR  /\  C  =/=  (/)  /\  E. x  e.  RR  A. w  e.  C  w  <_  x )  /\  w  e.  C )  ->  w  <_  sup ( C ,  RR ,  <  ) )
9257, 91sylan 458 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  w  e.  C )  ->  w  <_  sup ( C ,  RR ,  <  ) )
9381, 82, 83, 90, 92letrd 9183 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  w  e.  C )  ->  0  <_  sup ( C ,  RR ,  <  ) )
9493ex 424 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( w  e.  C  ->  0  <_  sup ( C ,  RR ,  <  ) ) )
9594exlimdv 1643 . . . . . . . . . . . . 13  |-  ( ph  ->  ( E. w  w  e.  C  ->  0  <_  sup ( C ,  RR ,  <  ) ) )
9648, 95syl5bi 209 . . . . . . . . . . . 12  |-  ( ph  ->  ( C  =/=  (/)  ->  0  <_  sup ( C ,  RR ,  <  ) ) )
9751, 96mpd 15 . . . . . . . . . . 11  |-  ( ph  ->  0  <_  sup ( C ,  RR ,  <  ) )
9897anim1i 552 . . . . . . . . . 10  |-  ( (
ph  /\  sup ( C ,  RR ,  <  )  <  ( A  x.  sup ( B ,  RR ,  <  ) ) )  ->  (
0  <_  sup ( C ,  RR ,  <  )  /\  sup ( C ,  RR ,  <  )  <  ( A  x.  sup ( B ,  RR ,  <  ) ) ) )
9968a1i 11 . . . . . . . . . . . 12  |-  ( ph  ->  0  e.  RR )
100 lelttr 9121 . . . . . . . . . . . 12  |-  ( ( 0  e.  RR  /\  sup ( C ,  RR ,  <  )  e.  RR  /\  ( A  x.  sup ( B ,  RR ,  <  ) )  e.  RR )  ->  ( ( 0  <_  sup ( C ,  RR ,  <  )  /\  sup ( C ,  RR ,  <  )  <  ( A  x.  sup ( B ,  RR ,  <  ) ) )  -> 
0  <  ( A  x.  sup ( B ,  RR ,  <  ) ) ) )
10199, 63, 52, 100syl3anc 1184 . . . . . . . . . . 11  |-  ( ph  ->  ( ( 0  <_  sup ( C ,  RR ,  <  )  /\  sup ( C ,  RR ,  <  )  <  ( A  x.  sup ( B ,  RR ,  <  ) ) )  ->  0  <  ( A  x.  sup ( B ,  RR ,  <  ) ) ) )
102101adantr 452 . . . . . . . . . 10  |-  ( (
ph  /\  sup ( C ,  RR ,  <  )  <  ( A  x.  sup ( B ,  RR ,  <  ) ) )  ->  (
( 0  <_  sup ( C ,  RR ,  <  )  /\  sup ( C ,  RR ,  <  )  <  ( A  x.  sup ( B ,  RR ,  <  ) ) )  ->  0  <  ( A  x.  sup ( B ,  RR ,  <  ) ) ) )
10398, 102mpd 15 . . . . . . . . 9  |-  ( (
ph  /\  sup ( C ,  RR ,  <  )  <  ( A  x.  sup ( B ,  RR ,  <  ) ) )  ->  0  <  ( A  x.  sup ( B ,  RR ,  <  ) ) )
104 prodgt02 9812 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\ 
sup ( B ,  RR ,  <  )  e.  RR )  /\  (
0  <_  sup ( B ,  RR ,  <  )  /\  0  < 
( A  x.  sup ( B ,  RR ,  <  ) ) ) )  ->  0  <  A
)
10566, 65, 80, 103, 104syl22anc 1185 . . . . . . . 8  |-  ( (
ph  /\  sup ( C ,  RR ,  <  )  <  ( A  x.  sup ( B ,  RR ,  <  ) ) )  ->  0  <  A )
106 ltdivmul 9838 . . . . . . . 8  |-  ( ( sup ( C ,  RR ,  <  )  e.  RR  /\  sup ( B ,  RR ,  <  )  e.  RR  /\  ( A  e.  RR  /\  0  <  A ) )  ->  ( ( sup ( C ,  RR ,  <  )  /  A
)  <  sup ( B ,  RR ,  <  )  <->  sup ( C ,  RR ,  <  )  < 
( A  x.  sup ( B ,  RR ,  <  ) ) ) )
10764, 65, 66, 105, 106syl112anc 1188 . . . . . . 7  |-  ( (
ph  /\  sup ( C ,  RR ,  <  )  <  ( A  x.  sup ( B ,  RR ,  <  ) ) )  ->  (
( sup ( C ,  RR ,  <  )  /  A )  <  sup ( B ,  RR ,  <  )  <->  sup ( C ,  RR ,  <  )  <  ( A  x.  sup ( B ,  RR ,  <  ) ) ) )
10861, 107mpbird 224 . . . . . 6  |-  ( (
ph  /\  sup ( C ,  RR ,  <  )  <  ( A  x.  sup ( B ,  RR ,  <  ) ) )  ->  ( sup ( C ,  RR ,  <  )  /  A
)  <  sup ( B ,  RR ,  <  ) )
10912adantr 452 . . . . . . 7  |-  ( (
ph  /\  sup ( C ,  RR ,  <  )  <  ( A  x.  sup ( B ,  RR ,  <  ) ) )  ->  ( B  C_  RR  /\  B  =/=  (/)  /\  E. x  e.  RR  A. y  e.  B  y  <_  x
) )
110105gt0ne0d 9547 . . . . . . . 8  |-  ( (
ph  /\  sup ( C ,  RR ,  <  )  <  ( A  x.  sup ( B ,  RR ,  <  ) ) )  ->  A  =/=  0 )
11164, 66, 110redivcld 9798 . . . . . . 7  |-  ( (
ph  /\  sup ( C ,  RR ,  <  )  <  ( A  x.  sup ( B ,  RR ,  <  ) ) )  ->  ( sup ( C ,  RR ,  <  )  /  A
)  e.  RR )
112 suprlub 9926 . . . . . . 7  |-  ( ( ( B  C_  RR  /\  B  =/=  (/)  /\  E. x  e.  RR  A. y  e.  B  y  <_  x )  /\  ( sup ( C ,  RR ,  <  )  /  A
)  e.  RR )  ->  ( ( sup ( C ,  RR ,  <  )  /  A
)  <  sup ( B ,  RR ,  <  )  <->  E. b  e.  B  ( sup ( C ,  RR ,  <  )  /  A )  <  b
) )
113109, 111, 112syl2anc 643 . . . . . 6  |-  ( (
ph  /\  sup ( C ,  RR ,  <  )  <  ( A  x.  sup ( B ,  RR ,  <  ) ) )  ->  (
( sup ( C ,  RR ,  <  )  /  A )  <  sup ( B ,  RR ,  <  )  <->  E. b  e.  B  ( sup ( C ,  RR ,  <  )  /  A )  <  b ) )
114108, 113mpbid 202 . . . . 5  |-  ( (
ph  /\  sup ( C ,  RR ,  <  )  <  ( A  x.  sup ( B ,  RR ,  <  ) ) )  ->  E. b  e.  B  ( sup ( C ,  RR ,  <  )  /  A )  <  b )
115 rspe 2727 . . . . . . . . . . . . . . 15  |-  ( ( b  e.  B  /\  w  =  ( A  x.  b ) )  ->  E. b  e.  B  w  =  ( A  x.  b ) )
116115, 9sylibr 204 . . . . . . . . . . . . . 14  |-  ( ( b  e.  B  /\  w  =  ( A  x.  b ) )  ->  w  e.  C )
117116adantl 453 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( b  e.  B  /\  w  =  ( A  x.  b ) ) )  ->  w  e.  C
)
118 simplrr 738 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
b  e.  B  /\  w  =  ( A  x.  b ) ) )  /\  w  e.  C
)  ->  w  =  ( A  x.  b
) )
11992adantlr 696 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
b  e.  B  /\  w  =  ( A  x.  b ) ) )  /\  w  e.  C
)  ->  w  <_  sup ( C ,  RR ,  <  ) )
120118, 119eqbrtrrd 4194 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
b  e.  B  /\  w  =  ( A  x.  b ) ) )  /\  w  e.  C
)  ->  ( A  x.  b )  <_  sup ( C ,  RR ,  <  ) )
121117, 120mpdan 650 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( b  e.  B  /\  w  =  ( A  x.  b ) ) )  ->  ( A  x.  b )  <_  sup ( C ,  RR ,  <  ) )
122121expr 599 . . . . . . . . . . 11  |-  ( (
ph  /\  b  e.  B )  ->  (
w  =  ( A  x.  b )  -> 
( A  x.  b
)  <_  sup ( C ,  RR ,  <  ) ) )
123122exlimdv 1643 . . . . . . . . . 10  |-  ( (
ph  /\  b  e.  B )  ->  ( E. w  w  =  ( A  x.  b
)  ->  ( A  x.  b )  <_  sup ( C ,  RR ,  <  ) ) )
12443, 123mpi 17 . . . . . . . . 9  |-  ( (
ph  /\  b  e.  B )  ->  ( A  x.  b )  <_  sup ( C ,  RR ,  <  ) )
125124adantlr 696 . . . . . . . 8  |-  ( ( ( ph  /\  sup ( C ,  RR ,  <  )  <  ( A  x.  sup ( B ,  RR ,  <  ) ) )  /\  b  e.  B )  ->  ( A  x.  b )  <_  sup ( C ,  RR ,  <  ) )
12634adantlr 696 . . . . . . . . 9  |-  ( ( ( ph  /\  sup ( C ,  RR ,  <  )  <  ( A  x.  sup ( B ,  RR ,  <  ) ) )  /\  b  e.  B )  ->  ( A  x.  b )  e.  RR )
12763ad2antrr 707 . . . . . . . . 9  |-  ( ( ( ph  /\  sup ( C ,  RR ,  <  )  <  ( A  x.  sup ( B ,  RR ,  <  ) ) )  /\  b  e.  B )  ->  sup ( C ,  RR ,  <  )  e.  RR )
128126, 127lenltd 9175 . . . . . . . 8  |-  ( ( ( ph  /\  sup ( C ,  RR ,  <  )  <  ( A  x.  sup ( B ,  RR ,  <  ) ) )  /\  b  e.  B )  ->  (
( A  x.  b
)  <_  sup ( C ,  RR ,  <  )  <->  -.  sup ( C ,  RR ,  <  )  <  ( A  x.  b ) ) )
129125, 128mpbid 202 . . . . . . 7  |-  ( ( ( ph  /\  sup ( C ,  RR ,  <  )  <  ( A  x.  sup ( B ,  RR ,  <  ) ) )  /\  b  e.  B )  ->  -.  sup ( C ,  RR ,  <  )  <  ( A  x.  b )
)
13014adantlr 696 . . . . . . . 8  |-  ( ( ( ph  /\  sup ( C ,  RR ,  <  )  <  ( A  x.  sup ( B ,  RR ,  <  ) ) )  /\  b  e.  B )  ->  b  e.  RR )
13119ad2antrr 707 . . . . . . . 8  |-  ( ( ( ph  /\  sup ( C ,  RR ,  <  )  <  ( A  x.  sup ( B ,  RR ,  <  ) ) )  /\  b  e.  B )  ->  A  e.  RR )
132105adantr 452 . . . . . . . 8  |-  ( ( ( ph  /\  sup ( C ,  RR ,  <  )  <  ( A  x.  sup ( B ,  RR ,  <  ) ) )  /\  b  e.  B )  ->  0  <  A )
133 ltdivmul 9838 . . . . . . . 8  |-  ( ( sup ( C ,  RR ,  <  )  e.  RR  /\  b  e.  RR  /\  ( A  e.  RR  /\  0  <  A ) )  -> 
( ( sup ( C ,  RR ,  <  )  /  A )  <  b  <->  sup ( C ,  RR ,  <  )  <  ( A  x.  b ) ) )
134127, 130, 131, 132, 133syl112anc 1188 . . . . . . 7  |-  ( ( ( ph  /\  sup ( C ,  RR ,  <  )  <  ( A  x.  sup ( B ,  RR ,  <  ) ) )  /\  b  e.  B )  ->  (
( sup ( C ,  RR ,  <  )  /  A )  < 
b  <->  sup ( C ,  RR ,  <  )  < 
( A  x.  b
) ) )
135129, 134mtbird 293 . . . . . 6  |-  ( ( ( ph  /\  sup ( C ,  RR ,  <  )  <  ( A  x.  sup ( B ,  RR ,  <  ) ) )  /\  b  e.  B )  ->  -.  ( sup ( C ,  RR ,  <  )  /  A )  <  b
)
136135nrexdv 2769 . . . . 5  |-  ( (
ph  /\  sup ( C ,  RR ,  <  )  <  ( A  x.  sup ( B ,  RR ,  <  ) ) )  ->  -.  E. b  e.  B  ( sup ( C ,  RR ,  <  )  /  A )  <  b
)
137114, 136pm2.65da 560 . . . 4  |-  ( ph  ->  -.  sup ( C ,  RR ,  <  )  <  ( A  x.  sup ( B ,  RR ,  <  ) ) )
13860, 137jca 519 . . 3  |-  ( ph  ->  ( sup ( C ,  RR ,  <  )  <_  ( A  x.  sup ( B ,  RR ,  <  ) )  /\  -.  sup ( C ,  RR ,  <  )  < 
( A  x.  sup ( B ,  RR ,  <  ) ) ) )
13963, 52eqleltd 9173 . . 3  |-  ( ph  ->  ( sup ( C ,  RR ,  <  )  =  ( A  x.  sup ( B ,  RR ,  <  ) )  <->  ( sup ( C ,  RR ,  <  )  <_  ( A  x.  sup ( B ,  RR ,  <  ) )  /\  -.  sup ( C ,  RR ,  <  )  <  ( A  x.  sup ( B ,  RR ,  <  ) ) ) ) )
140138, 139mpbird 224 . 2  |-  ( ph  ->  sup ( C ,  RR ,  <  )  =  ( A  x.  sup ( B ,  RR ,  <  ) ) )
141140eqcomd 2409 1  |-  ( ph  ->  ( A  x.  sup ( B ,  RR ,  <  ) )  =  sup ( C ,  RR ,  <  ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936   E.wex 1547    = wceq 1649    e. wcel 1721   {cab 2390    =/= wne 2567   A.wral 2666   E.wrex 2667    C_ wss 3280   (/)c0 3588   class class class wbr 4172  (class class class)co 6040   supcsup 7403   RRcr 8945   0cc0 8946    x. cmul 8951    < clt 9076    <_ cle 9077    / cdiv 9633
This theorem is referenced by:  supmul  9932
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660  ax-resscn 9003  ax-1cn 9004  ax-icn 9005  ax-addcl 9006  ax-addrcl 9007  ax-mulcl 9008  ax-mulrcl 9009  ax-mulcom 9010  ax-addass 9011  ax-mulass 9012  ax-distr 9013  ax-i2m1 9014  ax-1ne0 9015  ax-1rid 9016  ax-rnegex 9017  ax-rrecex 9018  ax-cnre 9019  ax-pre-lttri 9020  ax-pre-lttrn 9021  ax-pre-ltadd 9022  ax-pre-mulgt0 9023  ax-pre-sup 9024
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-nel 2570  df-ral 2671  df-rex 2672  df-reu 2673  df-rmo 2674  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-op 3783  df-uni 3976  df-br 4173  df-opab 4227  df-mpt 4228  df-id 4458  df-po 4463  df-so 4464  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-riota 6508  df-er 6864  df-en 7069  df-dom 7070  df-sdom 7071  df-sup 7404  df-pnf 9078  df-mnf 9079  df-xr 9080  df-ltxr 9081  df-le 9082  df-sub 9249  df-neg 9250  df-div 9634
  Copyright terms: Public domain W3C validator