MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  supmul Structured version   Unicode version

Theorem supmul 10511
Description: The supremum function distributes over multiplication, in the sense that  ( sup A
)  x.  ( sup B )  =  sup ( A  x.  B
), where  A  x.  B is shorthand for  { a  x.  b  |  a  e.  A ,  b  e.  B } and is defined as  C below. We made use of this in our definition of multiplication in the Dedekind cut construction of the reals (see df-mp 9362). (Contributed by Mario Carneiro, 5-Jul-2013.) (Revised by Mario Carneiro, 6-Sep-2014.)
Hypotheses
Ref Expression
supmul.1  |-  C  =  { z  |  E. v  e.  A  E. b  e.  B  z  =  ( v  x.  b ) }
supmul.2  |-  ( ph  <->  ( ( A. x  e.  A  0  <_  x  /\  A. x  e.  B 
0  <_  x )  /\  ( A  C_  RR  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  y  <_  x )  /\  ( B 
C_  RR  /\  B  =/=  (/)  /\  E. x  e.  RR  A. y  e.  B  y  <_  x
) ) )
Assertion
Ref Expression
supmul  |-  ( ph  ->  ( sup ( A ,  RR ,  <  )  x.  sup ( B ,  RR ,  <  ) )  =  sup ( C ,  RR ,  <  ) )
Distinct variable groups:    A, b,
v, x, y, z    B, b, v, x, y, z    x, C    ph, b,
z
Allowed substitution hints:    ph( x, y, v)    C( y, z, v, b)

Proof of Theorem supmul
Dummy variables  a  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 supmul.2 . . . . . . 7  |-  ( ph  <->  ( ( A. x  e.  A  0  <_  x  /\  A. x  e.  B 
0  <_  x )  /\  ( A  C_  RR  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  y  <_  x )  /\  ( B 
C_  RR  /\  B  =/=  (/)  /\  E. x  e.  RR  A. y  e.  B  y  <_  x
) ) )
21simp2bi 1012 . . . . . 6  |-  ( ph  ->  ( A  C_  RR  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  y  <_  x ) )
3 suprcl 10503 . . . . . 6  |-  ( ( A  C_  RR  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  y  <_  x
)  ->  sup ( A ,  RR ,  <  )  e.  RR )
42, 3syl 16 . . . . 5  |-  ( ph  ->  sup ( A ,  RR ,  <  )  e.  RR )
51simp3bi 1013 . . . . . 6  |-  ( ph  ->  ( B  C_  RR  /\  B  =/=  (/)  /\  E. x  e.  RR  A. y  e.  B  y  <_  x ) )
6 suprcl 10503 . . . . . 6  |-  ( ( B  C_  RR  /\  B  =/=  (/)  /\  E. x  e.  RR  A. y  e.  B  y  <_  x
)  ->  sup ( B ,  RR ,  <  )  e.  RR )
75, 6syl 16 . . . . 5  |-  ( ph  ->  sup ( B ,  RR ,  <  )  e.  RR )
8 recn 9582 . . . . . 6  |-  ( sup ( A ,  RR ,  <  )  e.  RR  ->  sup ( A ,  RR ,  <  )  e.  CC )
9 recn 9582 . . . . . 6  |-  ( sup ( B ,  RR ,  <  )  e.  RR  ->  sup ( B ,  RR ,  <  )  e.  CC )
10 mulcom 9578 . . . . . 6  |-  ( ( sup ( A ,  RR ,  <  )  e.  CC  /\  sup ( B ,  RR ,  <  )  e.  CC )  ->  ( sup ( A ,  RR ,  <  )  x.  sup ( B ,  RR ,  <  ) )  =  ( sup ( B ,  RR ,  <  )  x. 
sup ( A ,  RR ,  <  ) ) )
118, 9, 10syl2an 477 . . . . 5  |-  ( ( sup ( A ,  RR ,  <  )  e.  RR  /\  sup ( B ,  RR ,  <  )  e.  RR )  ->  ( sup ( A ,  RR ,  <  )  x.  sup ( B ,  RR ,  <  ) )  =  ( sup ( B ,  RR ,  <  )  x. 
sup ( A ,  RR ,  <  ) ) )
124, 7, 11syl2anc 661 . . . 4  |-  ( ph  ->  ( sup ( A ,  RR ,  <  )  x.  sup ( B ,  RR ,  <  ) )  =  ( sup ( B ,  RR ,  <  )  x.  sup ( A ,  RR ,  <  ) ) )
135simp2d 1009 . . . . . . 7  |-  ( ph  ->  B  =/=  (/) )
14 n0 3794 . . . . . . 7  |-  ( B  =/=  (/)  <->  E. b  b  e.  B )
1513, 14sylib 196 . . . . . 6  |-  ( ph  ->  E. b  b  e.  B )
16 0red 9597 . . . . . . 7  |-  ( (
ph  /\  b  e.  B )  ->  0  e.  RR )
175simp1d 1008 . . . . . . . 8  |-  ( ph  ->  B  C_  RR )
1817sselda 3504 . . . . . . 7  |-  ( (
ph  /\  b  e.  B )  ->  b  e.  RR )
197adantr 465 . . . . . . 7  |-  ( (
ph  /\  b  e.  B )  ->  sup ( B ,  RR ,  <  )  e.  RR )
20 simp1r 1021 . . . . . . . . . 10  |-  ( ( ( A. x  e.  A  0  <_  x  /\  A. x  e.  B 
0  <_  x )  /\  ( A  C_  RR  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  y  <_  x )  /\  ( B 
C_  RR  /\  B  =/=  (/)  /\  E. x  e.  RR  A. y  e.  B  y  <_  x
) )  ->  A. x  e.  B  0  <_  x )
211, 20sylbi 195 . . . . . . . . 9  |-  ( ph  ->  A. x  e.  B 
0  <_  x )
22 breq2 4451 . . . . . . . . . 10  |-  ( x  =  b  ->  (
0  <_  x  <->  0  <_  b ) )
2322rspccv 3211 . . . . . . . . 9  |-  ( A. x  e.  B  0  <_  x  ->  ( b  e.  B  ->  0  <_ 
b ) )
2421, 23syl 16 . . . . . . . 8  |-  ( ph  ->  ( b  e.  B  ->  0  <_  b )
)
2524imp 429 . . . . . . 7  |-  ( (
ph  /\  b  e.  B )  ->  0  <_  b )
26 suprub 10504 . . . . . . . 8  |-  ( ( ( B  C_  RR  /\  B  =/=  (/)  /\  E. x  e.  RR  A. y  e.  B  y  <_  x )  /\  b  e.  B )  ->  b  <_  sup ( B ,  RR ,  <  ) )
275, 26sylan 471 . . . . . . 7  |-  ( (
ph  /\  b  e.  B )  ->  b  <_  sup ( B ,  RR ,  <  ) )
2816, 18, 19, 25, 27letrd 9738 . . . . . 6  |-  ( (
ph  /\  b  e.  B )  ->  0  <_  sup ( B ,  RR ,  <  ) )
2915, 28exlimddv 1702 . . . . 5  |-  ( ph  ->  0  <_  sup ( B ,  RR ,  <  ) )
30 simp1l 1020 . . . . . 6  |-  ( ( ( A. x  e.  A  0  <_  x  /\  A. x  e.  B 
0  <_  x )  /\  ( A  C_  RR  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  y  <_  x )  /\  ( B 
C_  RR  /\  B  =/=  (/)  /\  E. x  e.  RR  A. y  e.  B  y  <_  x
) )  ->  A. x  e.  A  0  <_  x )
311, 30sylbi 195 . . . . 5  |-  ( ph  ->  A. x  e.  A 
0  <_  x )
32 eqid 2467 . . . . . 6  |-  { z  |  E. a  e.  A  z  =  ( sup ( B ,  RR ,  <  )  x.  a ) }  =  { z  |  E. a  e.  A  z  =  ( sup ( B ,  RR ,  <  )  x.  a ) }
33 biid 236 . . . . . 6  |-  ( ( ( sup ( B ,  RR ,  <  )  e.  RR  /\  0  <_  sup ( B ,  RR ,  <  )  /\  A. x  e.  A  0  <_  x )  /\  ( A  C_  RR  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  y  <_  x
) )  <->  ( ( sup ( B ,  RR ,  <  )  e.  RR  /\  0  <_  sup ( B ,  RR ,  <  )  /\  A. x  e.  A  0  <_  x )  /\  ( A 
C_  RR  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  y  <_  x
) ) )
3432, 33supmul1 10508 . . . . 5  |-  ( ( ( sup ( B ,  RR ,  <  )  e.  RR  /\  0  <_  sup ( B ,  RR ,  <  )  /\  A. x  e.  A  0  <_  x )  /\  ( A  C_  RR  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  y  <_  x
) )  ->  ( sup ( B ,  RR ,  <  )  x.  sup ( A ,  RR ,  <  ) )  =  sup ( { z  |  E. a  e.  A  z  =  ( sup ( B ,  RR ,  <  )  x.  a ) } ,  RR ,  <  ) )
357, 29, 31, 2, 34syl31anc 1231 . . . 4  |-  ( ph  ->  ( sup ( B ,  RR ,  <  )  x.  sup ( A ,  RR ,  <  ) )  =  sup ( { z  |  E. a  e.  A  z  =  ( sup ( B ,  RR ,  <  )  x.  a ) } ,  RR ,  <  ) )
3612, 35eqtrd 2508 . . 3  |-  ( ph  ->  ( sup ( A ,  RR ,  <  )  x.  sup ( B ,  RR ,  <  ) )  =  sup ( { z  |  E. a  e.  A  z  =  ( sup ( B ,  RR ,  <  )  x.  a ) } ,  RR ,  <  ) )
37 vex 3116 . . . . . . 7  |-  w  e. 
_V
38 eqeq1 2471 . . . . . . . 8  |-  ( z  =  w  ->  (
z  =  ( sup ( B ,  RR ,  <  )  x.  a
)  <->  w  =  ( sup ( B ,  RR ,  <  )  x.  a
) ) )
3938rexbidv 2973 . . . . . . 7  |-  ( z  =  w  ->  ( E. a  e.  A  z  =  ( sup ( B ,  RR ,  <  )  x.  a )  <->  E. a  e.  A  w  =  ( sup ( B ,  RR ,  <  )  x.  a ) ) )
4037, 39elab 3250 . . . . . 6  |-  ( w  e.  { z  |  E. a  e.  A  z  =  ( sup ( B ,  RR ,  <  )  x.  a ) }  <->  E. a  e.  A  w  =  ( sup ( B ,  RR ,  <  )  x.  a ) )
417adantr 465 . . . . . . . . . 10  |-  ( (
ph  /\  a  e.  A )  ->  sup ( B ,  RR ,  <  )  e.  RR )
422simp1d 1008 . . . . . . . . . . 11  |-  ( ph  ->  A  C_  RR )
4342sselda 3504 . . . . . . . . . 10  |-  ( (
ph  /\  a  e.  A )  ->  a  e.  RR )
44 recn 9582 . . . . . . . . . . 11  |-  ( a  e.  RR  ->  a  e.  CC )
45 mulcom 9578 . . . . . . . . . . 11  |-  ( ( sup ( B ,  RR ,  <  )  e.  CC  /\  a  e.  CC )  ->  ( sup ( B ,  RR ,  <  )  x.  a
)  =  ( a  x.  sup ( B ,  RR ,  <  ) ) )
469, 44, 45syl2an 477 . . . . . . . . . 10  |-  ( ( sup ( B ,  RR ,  <  )  e.  RR  /\  a  e.  RR )  ->  ( sup ( B ,  RR ,  <  )  x.  a
)  =  ( a  x.  sup ( B ,  RR ,  <  ) ) )
4741, 43, 46syl2anc 661 . . . . . . . . 9  |-  ( (
ph  /\  a  e.  A )  ->  ( sup ( B ,  RR ,  <  )  x.  a
)  =  ( a  x.  sup ( B ,  RR ,  <  ) ) )
48 breq2 4451 . . . . . . . . . . . . . 14  |-  ( x  =  a  ->  (
0  <_  x  <->  0  <_  a ) )
4948rspccv 3211 . . . . . . . . . . . . 13  |-  ( A. x  e.  A  0  <_  x  ->  ( a  e.  A  ->  0  <_ 
a ) )
5031, 49syl 16 . . . . . . . . . . . 12  |-  ( ph  ->  ( a  e.  A  ->  0  <_  a )
)
5150imp 429 . . . . . . . . . . 11  |-  ( (
ph  /\  a  e.  A )  ->  0  <_  a )
5221adantr 465 . . . . . . . . . . 11  |-  ( (
ph  /\  a  e.  A )  ->  A. x  e.  B  0  <_  x )
535adantr 465 . . . . . . . . . . 11  |-  ( (
ph  /\  a  e.  A )  ->  ( B  C_  RR  /\  B  =/=  (/)  /\  E. x  e.  RR  A. y  e.  B  y  <_  x
) )
54 eqid 2467 . . . . . . . . . . . 12  |-  { z  |  E. b  e.  B  z  =  ( a  x.  b ) }  =  { z  |  E. b  e.  B  z  =  ( a  x.  b ) }
55 biid 236 . . . . . . . . . . . 12  |-  ( ( ( a  e.  RR  /\  0  <_  a  /\  A. x  e.  B  0  <_  x )  /\  ( B  C_  RR  /\  B  =/=  (/)  /\  E. x  e.  RR  A. y  e.  B  y  <_  x
) )  <->  ( (
a  e.  RR  /\  0  <_  a  /\  A. x  e.  B  0  <_  x )  /\  ( B  C_  RR  /\  B  =/=  (/)  /\  E. x  e.  RR  A. y  e.  B  y  <_  x
) ) )
5654, 55supmul1 10508 . . . . . . . . . . 11  |-  ( ( ( a  e.  RR  /\  0  <_  a  /\  A. x  e.  B  0  <_  x )  /\  ( B  C_  RR  /\  B  =/=  (/)  /\  E. x  e.  RR  A. y  e.  B  y  <_  x
) )  ->  (
a  x.  sup ( B ,  RR ,  <  ) )  =  sup ( { z  |  E. b  e.  B  z  =  ( a  x.  b ) } ,  RR ,  <  ) )
5743, 51, 52, 53, 56syl31anc 1231 . . . . . . . . . 10  |-  ( (
ph  /\  a  e.  A )  ->  (
a  x.  sup ( B ,  RR ,  <  ) )  =  sup ( { z  |  E. b  e.  B  z  =  ( a  x.  b ) } ,  RR ,  <  ) )
58 eqeq1 2471 . . . . . . . . . . . . . . 15  |-  ( z  =  w  ->  (
z  =  ( a  x.  b )  <->  w  =  ( a  x.  b
) ) )
5958rexbidv 2973 . . . . . . . . . . . . . 14  |-  ( z  =  w  ->  ( E. b  e.  B  z  =  ( a  x.  b )  <->  E. b  e.  B  w  =  ( a  x.  b
) ) )
6037, 59elab 3250 . . . . . . . . . . . . 13  |-  ( w  e.  { z  |  E. b  e.  B  z  =  ( a  x.  b ) }  <->  E. b  e.  B  w  =  ( a  x.  b
) )
61 rspe 2922 . . . . . . . . . . . . . . . 16  |-  ( ( a  e.  A  /\  E. b  e.  B  w  =  ( a  x.  b ) )  ->  E. a  e.  A  E. b  e.  B  w  =  ( a  x.  b ) )
62 oveq1 6291 . . . . . . . . . . . . . . . . . . . . 21  |-  ( v  =  a  ->  (
v  x.  b )  =  ( a  x.  b ) )
6362eqeq2d 2481 . . . . . . . . . . . . . . . . . . . 20  |-  ( v  =  a  ->  (
z  =  ( v  x.  b )  <->  z  =  ( a  x.  b
) ) )
6463rexbidv 2973 . . . . . . . . . . . . . . . . . . 19  |-  ( v  =  a  ->  ( E. b  e.  B  z  =  ( v  x.  b )  <->  E. b  e.  B  z  =  ( a  x.  b
) ) )
6564cbvrexv 3089 . . . . . . . . . . . . . . . . . 18  |-  ( E. v  e.  A  E. b  e.  B  z  =  ( v  x.  b )  <->  E. a  e.  A  E. b  e.  B  z  =  ( a  x.  b
) )
66582rexbidv 2980 . . . . . . . . . . . . . . . . . 18  |-  ( z  =  w  ->  ( E. a  e.  A  E. b  e.  B  z  =  ( a  x.  b )  <->  E. a  e.  A  E. b  e.  B  w  =  ( a  x.  b
) ) )
6765, 66syl5bb 257 . . . . . . . . . . . . . . . . 17  |-  ( z  =  w  ->  ( E. v  e.  A  E. b  e.  B  z  =  ( v  x.  b )  <->  E. a  e.  A  E. b  e.  B  w  =  ( a  x.  b
) ) )
68 supmul.1 . . . . . . . . . . . . . . . . 17  |-  C  =  { z  |  E. v  e.  A  E. b  e.  B  z  =  ( v  x.  b ) }
6937, 67, 68elab2 3253 . . . . . . . . . . . . . . . 16  |-  ( w  e.  C  <->  E. a  e.  A  E. b  e.  B  w  =  ( a  x.  b
) )
7061, 69sylibr 212 . . . . . . . . . . . . . . 15  |-  ( ( a  e.  A  /\  E. b  e.  B  w  =  ( a  x.  b ) )  ->  w  e.  C )
7170ex 434 . . . . . . . . . . . . . 14  |-  ( a  e.  A  ->  ( E. b  e.  B  w  =  ( a  x.  b )  ->  w  e.  C ) )
7268, 1supmullem2 10510 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( C  C_  RR  /\  C  =/=  (/)  /\  E. x  e.  RR  A. w  e.  C  w  <_  x ) )
73 suprub 10504 . . . . . . . . . . . . . . . 16  |-  ( ( ( C  C_  RR  /\  C  =/=  (/)  /\  E. x  e.  RR  A. w  e.  C  w  <_  x )  /\  w  e.  C )  ->  w  <_  sup ( C ,  RR ,  <  ) )
7473ex 434 . . . . . . . . . . . . . . 15  |-  ( ( C  C_  RR  /\  C  =/=  (/)  /\  E. x  e.  RR  A. w  e.  C  w  <_  x
)  ->  ( w  e.  C  ->  w  <_  sup ( C ,  RR ,  <  ) ) )
7572, 74syl 16 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( w  e.  C  ->  w  <_  sup ( C ,  RR ,  <  ) ) )
7671, 75sylan9r 658 . . . . . . . . . . . . 13  |-  ( (
ph  /\  a  e.  A )  ->  ( E. b  e.  B  w  =  ( a  x.  b )  ->  w  <_  sup ( C ,  RR ,  <  ) ) )
7760, 76syl5bi 217 . . . . . . . . . . . 12  |-  ( (
ph  /\  a  e.  A )  ->  (
w  e.  { z  |  E. b  e.  B  z  =  ( a  x.  b ) }  ->  w  <_  sup ( C ,  RR ,  <  ) ) )
7877ralrimiv 2876 . . . . . . . . . . 11  |-  ( (
ph  /\  a  e.  A )  ->  A. w  e.  { z  |  E. b  e.  B  z  =  ( a  x.  b ) } w  <_  sup ( C ,  RR ,  <  ) )
7943adantr 465 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  a  e.  A )  /\  b  e.  B )  ->  a  e.  RR )
8018adantlr 714 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  a  e.  A )  /\  b  e.  B )  ->  b  e.  RR )
8179, 80remulcld 9624 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  a  e.  A )  /\  b  e.  B )  ->  (
a  x.  b )  e.  RR )
82 eleq1a 2550 . . . . . . . . . . . . . . 15  |-  ( ( a  x.  b )  e.  RR  ->  (
z  =  ( a  x.  b )  -> 
z  e.  RR ) )
8381, 82syl 16 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  a  e.  A )  /\  b  e.  B )  ->  (
z  =  ( a  x.  b )  -> 
z  e.  RR ) )
8483rexlimdva 2955 . . . . . . . . . . . . 13  |-  ( (
ph  /\  a  e.  A )  ->  ( E. b  e.  B  z  =  ( a  x.  b )  ->  z  e.  RR ) )
8584abssdv 3574 . . . . . . . . . . . 12  |-  ( (
ph  /\  a  e.  A )  ->  { z  |  E. b  e.  B  z  =  ( a  x.  b ) }  C_  RR )
86 ovex 6309 . . . . . . . . . . . . . . . . . . 19  |-  ( a  x.  b )  e. 
_V
8786isseti 3119 . . . . . . . . . . . . . . . . . 18  |-  E. w  w  =  ( a  x.  b )
8887rgenw 2825 . . . . . . . . . . . . . . . . 17  |-  A. b  e.  B  E. w  w  =  ( a  x.  b )
89 r19.2z 3917 . . . . . . . . . . . . . . . . 17  |-  ( ( B  =/=  (/)  /\  A. b  e.  B  E. w  w  =  (
a  x.  b ) )  ->  E. b  e.  B  E. w  w  =  ( a  x.  b ) )
9013, 88, 89sylancl 662 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  E. b  e.  B  E. w  w  =  ( a  x.  b
) )
91 rexcom4 3133 . . . . . . . . . . . . . . . 16  |-  ( E. b  e.  B  E. w  w  =  (
a  x.  b )  <->  E. w E. b  e.  B  w  =  ( a  x.  b ) )
9290, 91sylib 196 . . . . . . . . . . . . . . 15  |-  ( ph  ->  E. w E. b  e.  B  w  =  ( a  x.  b
) )
9359cbvexv 1997 . . . . . . . . . . . . . . 15  |-  ( E. z E. b  e.  B  z  =  ( a  x.  b )  <->  E. w E. b  e.  B  w  =  ( a  x.  b ) )
9492, 93sylibr 212 . . . . . . . . . . . . . 14  |-  ( ph  ->  E. z E. b  e.  B  z  =  ( a  x.  b
) )
95 abn0 3804 . . . . . . . . . . . . . 14  |-  ( { z  |  E. b  e.  B  z  =  ( a  x.  b
) }  =/=  (/)  <->  E. z E. b  e.  B  z  =  ( a  x.  b ) )
9694, 95sylibr 212 . . . . . . . . . . . . 13  |-  ( ph  ->  { z  |  E. b  e.  B  z  =  ( a  x.  b ) }  =/=  (/) )
9796adantr 465 . . . . . . . . . . . 12  |-  ( (
ph  /\  a  e.  A )  ->  { z  |  E. b  e.  B  z  =  ( a  x.  b ) }  =/=  (/) )
98 suprcl 10503 . . . . . . . . . . . . . . 15  |-  ( ( C  C_  RR  /\  C  =/=  (/)  /\  E. x  e.  RR  A. w  e.  C  w  <_  x
)  ->  sup ( C ,  RR ,  <  )  e.  RR )
9972, 98syl 16 . . . . . . . . . . . . . 14  |-  ( ph  ->  sup ( C ,  RR ,  <  )  e.  RR )
10099adantr 465 . . . . . . . . . . . . 13  |-  ( (
ph  /\  a  e.  A )  ->  sup ( C ,  RR ,  <  )  e.  RR )
101 breq2 4451 . . . . . . . . . . . . . . 15  |-  ( x  =  sup ( C ,  RR ,  <  )  ->  ( w  <_  x 
<->  w  <_  sup ( C ,  RR ,  <  ) ) )
102101ralbidv 2903 . . . . . . . . . . . . . 14  |-  ( x  =  sup ( C ,  RR ,  <  )  ->  ( A. w  e.  { z  |  E. b  e.  B  z  =  ( a  x.  b ) } w  <_  x  <->  A. w  e.  {
z  |  E. b  e.  B  z  =  ( a  x.  b
) } w  <_  sup ( C ,  RR ,  <  ) ) )
103102rspcev 3214 . . . . . . . . . . . . 13  |-  ( ( sup ( C ,  RR ,  <  )  e.  RR  /\  A. w  e.  { z  |  E. b  e.  B  z  =  ( a  x.  b ) } w  <_  sup ( C ,  RR ,  <  ) )  ->  E. x  e.  RR  A. w  e.  { z  |  E. b  e.  B  z  =  ( a  x.  b ) } w  <_  x
)
104100, 78, 103syl2anc 661 . . . . . . . . . . . 12  |-  ( (
ph  /\  a  e.  A )  ->  E. x  e.  RR  A. w  e. 
{ z  |  E. b  e.  B  z  =  ( a  x.  b ) } w  <_  x )
105 suprleub 10507 . . . . . . . . . . . 12  |-  ( ( ( { z  |  E. b  e.  B  z  =  ( a  x.  b ) }  C_  RR  /\  { z  |  E. b  e.  B  z  =  ( a  x.  b ) }  =/=  (/) 
/\  E. x  e.  RR  A. w  e.  { z  |  E. b  e.  B  z  =  ( a  x.  b ) } w  <_  x
)  /\  sup ( C ,  RR ,  <  )  e.  RR )  ->  ( sup ( { z  |  E. b  e.  B  z  =  ( a  x.  b ) } ,  RR ,  <  )  <_  sup ( C ,  RR ,  <  )  <->  A. w  e.  { z  |  E. b  e.  B  z  =  ( a  x.  b ) } w  <_  sup ( C ,  RR ,  <  ) ) )
10685, 97, 104, 100, 105syl31anc 1231 . . . . . . . . . . 11  |-  ( (
ph  /\  a  e.  A )  ->  ( sup ( { z  |  E. b  e.  B  z  =  ( a  x.  b ) } ,  RR ,  <  )  <_  sup ( C ,  RR ,  <  )  <->  A. w  e.  { z  |  E. b  e.  B  z  =  ( a  x.  b ) } w  <_  sup ( C ,  RR ,  <  ) ) )
10778, 106mpbird 232 . . . . . . . . . 10  |-  ( (
ph  /\  a  e.  A )  ->  sup ( { z  |  E. b  e.  B  z  =  ( a  x.  b ) } ,  RR ,  <  )  <_  sup ( C ,  RR ,  <  ) )
10857, 107eqbrtrd 4467 . . . . . . . . 9  |-  ( (
ph  /\  a  e.  A )  ->  (
a  x.  sup ( B ,  RR ,  <  ) )  <_  sup ( C ,  RR ,  <  ) )
10947, 108eqbrtrd 4467 . . . . . . . 8  |-  ( (
ph  /\  a  e.  A )  ->  ( sup ( B ,  RR ,  <  )  x.  a
)  <_  sup ( C ,  RR ,  <  ) )
110 breq1 4450 . . . . . . . 8  |-  ( w  =  ( sup ( B ,  RR ,  <  )  x.  a )  ->  ( w  <_  sup ( C ,  RR ,  <  )  <->  ( sup ( B ,  RR ,  <  )  x.  a )  <_  sup ( C ,  RR ,  <  ) ) )
111109, 110syl5ibrcom 222 . . . . . . 7  |-  ( (
ph  /\  a  e.  A )  ->  (
w  =  ( sup ( B ,  RR ,  <  )  x.  a
)  ->  w  <_  sup ( C ,  RR ,  <  ) ) )
112111rexlimdva 2955 . . . . . 6  |-  ( ph  ->  ( E. a  e.  A  w  =  ( sup ( B ,  RR ,  <  )  x.  a )  ->  w  <_  sup ( C ,  RR ,  <  ) ) )
11340, 112syl5bi 217 . . . . 5  |-  ( ph  ->  ( w  e.  {
z  |  E. a  e.  A  z  =  ( sup ( B ,  RR ,  <  )  x.  a ) }  ->  w  <_  sup ( C ,  RR ,  <  ) ) )
114113ralrimiv 2876 . . . 4  |-  ( ph  ->  A. w  e.  {
z  |  E. a  e.  A  z  =  ( sup ( B ,  RR ,  <  )  x.  a ) } w  <_  sup ( C ,  RR ,  <  ) )
11541, 43remulcld 9624 . . . . . . . 8  |-  ( (
ph  /\  a  e.  A )  ->  ( sup ( B ,  RR ,  <  )  x.  a
)  e.  RR )
116 eleq1a 2550 . . . . . . . 8  |-  ( ( sup ( B ,  RR ,  <  )  x.  a )  e.  RR  ->  ( z  =  ( sup ( B ,  RR ,  <  )  x.  a )  ->  z  e.  RR ) )
117115, 116syl 16 . . . . . . 7  |-  ( (
ph  /\  a  e.  A )  ->  (
z  =  ( sup ( B ,  RR ,  <  )  x.  a
)  ->  z  e.  RR ) )
118117rexlimdva 2955 . . . . . 6  |-  ( ph  ->  ( E. a  e.  A  z  =  ( sup ( B ,  RR ,  <  )  x.  a )  ->  z  e.  RR ) )
119118abssdv 3574 . . . . 5  |-  ( ph  ->  { z  |  E. a  e.  A  z  =  ( sup ( B ,  RR ,  <  )  x.  a ) }  C_  RR )
1202simp2d 1009 . . . . . . . 8  |-  ( ph  ->  A  =/=  (/) )
121 ovex 6309 . . . . . . . . . 10  |-  ( sup ( B ,  RR ,  <  )  x.  a
)  e.  _V
122121isseti 3119 . . . . . . . . 9  |-  E. z 
z  =  ( sup ( B ,  RR ,  <  )  x.  a
)
123122rgenw 2825 . . . . . . . 8  |-  A. a  e.  A  E. z 
z  =  ( sup ( B ,  RR ,  <  )  x.  a
)
124 r19.2z 3917 . . . . . . . 8  |-  ( ( A  =/=  (/)  /\  A. a  e.  A  E. z  z  =  ( sup ( B ,  RR ,  <  )  x.  a
) )  ->  E. a  e.  A  E. z 
z  =  ( sup ( B ,  RR ,  <  )  x.  a
) )
125120, 123, 124sylancl 662 . . . . . . 7  |-  ( ph  ->  E. a  e.  A  E. z  z  =  ( sup ( B ,  RR ,  <  )  x.  a ) )
126 rexcom4 3133 . . . . . . 7  |-  ( E. a  e.  A  E. z  z  =  ( sup ( B ,  RR ,  <  )  x.  a
)  <->  E. z E. a  e.  A  z  =  ( sup ( B ,  RR ,  <  )  x.  a ) )
127125, 126sylib 196 . . . . . 6  |-  ( ph  ->  E. z E. a  e.  A  z  =  ( sup ( B ,  RR ,  <  )  x.  a ) )
128 abn0 3804 . . . . . 6  |-  ( { z  |  E. a  e.  A  z  =  ( sup ( B ,  RR ,  <  )  x.  a ) }  =/=  (/)  <->  E. z E. a  e.  A  z  =  ( sup ( B ,  RR ,  <  )  x.  a ) )
129127, 128sylibr 212 . . . . 5  |-  ( ph  ->  { z  |  E. a  e.  A  z  =  ( sup ( B ,  RR ,  <  )  x.  a ) }  =/=  (/) )
130101ralbidv 2903 . . . . . . 7  |-  ( x  =  sup ( C ,  RR ,  <  )  ->  ( A. w  e.  { z  |  E. a  e.  A  z  =  ( sup ( B ,  RR ,  <  )  x.  a ) } w  <_  x  <->  A. w  e.  { z  |  E. a  e.  A  z  =  ( sup ( B ,  RR ,  <  )  x.  a ) } w  <_  sup ( C ,  RR ,  <  ) ) )
131130rspcev 3214 . . . . . 6  |-  ( ( sup ( C ,  RR ,  <  )  e.  RR  /\  A. w  e.  { z  |  E. a  e.  A  z  =  ( sup ( B ,  RR ,  <  )  x.  a ) } w  <_  sup ( C ,  RR ,  <  ) )  ->  E. x  e.  RR  A. w  e. 
{ z  |  E. a  e.  A  z  =  ( sup ( B ,  RR ,  <  )  x.  a ) } w  <_  x
)
13299, 114, 131syl2anc 661 . . . . 5  |-  ( ph  ->  E. x  e.  RR  A. w  e.  { z  |  E. a  e.  A  z  =  ( sup ( B ,  RR ,  <  )  x.  a ) } w  <_  x )
133 suprleub 10507 . . . . 5  |-  ( ( ( { z  |  E. a  e.  A  z  =  ( sup ( B ,  RR ,  <  )  x.  a ) }  C_  RR  /\  {
z  |  E. a  e.  A  z  =  ( sup ( B ,  RR ,  <  )  x.  a ) }  =/=  (/) 
/\  E. x  e.  RR  A. w  e.  { z  |  E. a  e.  A  z  =  ( sup ( B ,  RR ,  <  )  x.  a ) } w  <_  x )  /\  sup ( C ,  RR ,  <  )  e.  RR )  ->  ( sup ( { z  |  E. a  e.  A  z  =  ( sup ( B ,  RR ,  <  )  x.  a ) } ,  RR ,  <  )  <_  sup ( C ,  RR ,  <  )  <->  A. w  e.  {
z  |  E. a  e.  A  z  =  ( sup ( B ,  RR ,  <  )  x.  a ) } w  <_  sup ( C ,  RR ,  <  ) ) )
134119, 129, 132, 99, 133syl31anc 1231 . . . 4  |-  ( ph  ->  ( sup ( { z  |  E. a  e.  A  z  =  ( sup ( B ,  RR ,  <  )  x.  a ) } ,  RR ,  <  )  <_  sup ( C ,  RR ,  <  )  <->  A. w  e.  { z  |  E. a  e.  A  z  =  ( sup ( B ,  RR ,  <  )  x.  a ) } w  <_  sup ( C ,  RR ,  <  ) ) )
135114, 134mpbird 232 . . 3  |-  ( ph  ->  sup ( { z  |  E. a  e.  A  z  =  ( sup ( B ,  RR ,  <  )  x.  a ) } ,  RR ,  <  )  <_  sup ( C ,  RR ,  <  ) )
13636, 135eqbrtrd 4467 . 2  |-  ( ph  ->  ( sup ( A ,  RR ,  <  )  x.  sup ( B ,  RR ,  <  ) )  <_  sup ( C ,  RR ,  <  ) )
13768, 1supmullem1 10509 . . 3  |-  ( ph  ->  A. w  e.  C  w  <_  ( sup ( A ,  RR ,  <  )  x.  sup ( B ,  RR ,  <  ) ) )
1384, 7remulcld 9624 . . . 4  |-  ( ph  ->  ( sup ( A ,  RR ,  <  )  x.  sup ( B ,  RR ,  <  ) )  e.  RR )
139 suprleub 10507 . . . 4  |-  ( ( ( C  C_  RR  /\  C  =/=  (/)  /\  E. x  e.  RR  A. w  e.  C  w  <_  x )  /\  ( sup ( A ,  RR ,  <  )  x.  sup ( B ,  RR ,  <  ) )  e.  RR )  ->  ( sup ( C ,  RR ,  <  )  <_  ( sup ( A ,  RR ,  <  )  x.  sup ( B ,  RR ,  <  ) )  <->  A. w  e.  C  w  <_  ( sup ( A ,  RR ,  <  )  x. 
sup ( B ,  RR ,  <  ) ) ) )
14072, 138, 139syl2anc 661 . . 3  |-  ( ph  ->  ( sup ( C ,  RR ,  <  )  <_  ( sup ( A ,  RR ,  <  )  x.  sup ( B ,  RR ,  <  ) )  <->  A. w  e.  C  w  <_  ( sup ( A ,  RR ,  <  )  x. 
sup ( B ,  RR ,  <  ) ) ) )
141137, 140mpbird 232 . 2  |-  ( ph  ->  sup ( C ,  RR ,  <  )  <_ 
( sup ( A ,  RR ,  <  )  x.  sup ( B ,  RR ,  <  ) ) )
142138, 99letri3d 9726 . 2  |-  ( ph  ->  ( ( sup ( A ,  RR ,  <  )  x.  sup ( B ,  RR ,  <  ) )  =  sup ( C ,  RR ,  <  )  <->  ( ( sup ( A ,  RR ,  <  )  x.  sup ( B ,  RR ,  <  ) )  <_  sup ( C ,  RR ,  <  )  /\  sup ( C ,  RR ,  <  )  <_  ( sup ( A ,  RR ,  <  )  x.  sup ( B ,  RR ,  <  ) ) ) ) )
143136, 141, 142mpbir2and 920 1  |-  ( ph  ->  ( sup ( A ,  RR ,  <  )  x.  sup ( B ,  RR ,  <  ) )  =  sup ( C ,  RR ,  <  ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 973    = wceq 1379   E.wex 1596    e. wcel 1767   {cab 2452    =/= wne 2662   A.wral 2814   E.wrex 2815    C_ wss 3476   (/)c0 3785   class class class wbr 4447  (class class class)co 6284   supcsup 7900   CCcc 9490   RRcr 9491   0cc0 9492    x. cmul 9497    < clt 9628    <_ cle 9629
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6576  ax-resscn 9549  ax-1cn 9550  ax-icn 9551  ax-addcl 9552  ax-addrcl 9553  ax-mulcl 9554  ax-mulrcl 9555  ax-mulcom 9556  ax-addass 9557  ax-mulass 9558  ax-distr 9559  ax-i2m1 9560  ax-1ne0 9561  ax-1rid 9562  ax-rnegex 9563  ax-rrecex 9564  ax-cnre 9565  ax-pre-lttri 9566  ax-pre-lttrn 9567  ax-pre-ltadd 9568  ax-pre-mulgt0 9569  ax-pre-sup 9570
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2819  df-rex 2820  df-reu 2821  df-rmo 2822  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-op 4034  df-uni 4246  df-br 4448  df-opab 4506  df-mpt 4507  df-id 4795  df-po 4800  df-so 4801  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5551  df-fun 5590  df-fn 5591  df-f 5592  df-f1 5593  df-fo 5594  df-f1o 5595  df-fv 5596  df-riota 6245  df-ov 6287  df-oprab 6288  df-mpt2 6289  df-er 7311  df-en 7517  df-dom 7518  df-sdom 7519  df-sup 7901  df-pnf 9630  df-mnf 9631  df-xr 9632  df-ltxr 9633  df-le 9634  df-sub 9807  df-neg 9808  df-div 10207
This theorem is referenced by:  sqrlem5  13043
  Copyright terms: Public domain W3C validator