MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  supminf Structured version   Unicode version

Theorem supminf 11170
Description: The supremum of a bounded-above set of reals is the negation of the supremum of that set's image under negation. (Contributed by Paul Chapman, 21-Mar-2011.)
Assertion
Ref Expression
supminf  |-  ( ( A  C_  RR  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  y  <_  x
)  ->  sup ( A ,  RR ,  <  )  =  -u sup ( { z  e.  RR  |  -u z  e.  A } ,  RR ,  `'  <  ) )
Distinct variable group:    x, A, y, z

Proof of Theorem supminf
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 negn0 11169 . . . . 5  |-  ( ( A  C_  RR  /\  A  =/=  (/) )  ->  { z  e.  RR  |  -u z  e.  A }  =/=  (/) )
2 ublbneg 11167 . . . . 5  |-  ( E. x  e.  RR  A. y  e.  A  y  <_  x  ->  E. x  e.  RR  A. y  e. 
{ z  e.  RR  |  -u z  e.  A } x  <_  y )
3 ssrab2 3571 . . . . . 6  |-  { z  e.  RR  |  -u z  e.  A }  C_  RR
4 infmsup 10516 . . . . . 6  |-  ( ( { z  e.  RR  |  -u z  e.  A }  C_  RR  /\  {
z  e.  RR  |  -u z  e.  A }  =/=  (/)  /\  E. x  e.  RR  A. y  e. 
{ z  e.  RR  |  -u z  e.  A } x  <_  y )  ->  sup ( { z  e.  RR  |  -u z  e.  A } ,  RR ,  `'  <  )  =  -u sup ( { w  e.  RR  |  -u w  e.  { z  e.  RR  |  -u z  e.  A } } ,  RR ,  <  ) )
53, 4mp3an1 1309 . . . . 5  |-  ( ( { z  e.  RR  |  -u z  e.  A }  =/=  (/)  /\  E. x  e.  RR  A. y  e. 
{ z  e.  RR  |  -u z  e.  A } x  <_  y )  ->  sup ( { z  e.  RR  |  -u z  e.  A } ,  RR ,  `'  <  )  =  -u sup ( { w  e.  RR  |  -u w  e.  { z  e.  RR  |  -u z  e.  A } } ,  RR ,  <  ) )
61, 2, 5syl2an 475 . . . 4  |-  ( ( ( A  C_  RR  /\  A  =/=  (/) )  /\  E. x  e.  RR  A. y  e.  A  y  <_  x )  ->  sup ( { z  e.  RR  |  -u z  e.  A } ,  RR ,  `'  <  )  =  -u sup ( { w  e.  RR  |  -u w  e.  { z  e.  RR  |  -u z  e.  A } } ,  RR ,  <  ) )
763impa 1189 . . 3  |-  ( ( A  C_  RR  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  y  <_  x
)  ->  sup ( { z  e.  RR  |  -u z  e.  A } ,  RR ,  `'  <  )  =  -u sup ( { w  e.  RR  |  -u w  e.  { z  e.  RR  |  -u z  e.  A } } ,  RR ,  <  ) )
8 elrabi 3251 . . . . . . . 8  |-  ( x  e.  { w  e.  RR  |  -u w  e.  { z  e.  RR  |  -u z  e.  A } }  ->  x  e.  RR )
98adantl 464 . . . . . . 7  |-  ( ( A  C_  RR  /\  x  e.  { w  e.  RR  |  -u w  e.  {
z  e.  RR  |  -u z  e.  A } } )  ->  x  e.  RR )
10 ssel2 3484 . . . . . . 7  |-  ( ( A  C_  RR  /\  x  e.  A )  ->  x  e.  RR )
11 negeq 9803 . . . . . . . . . . 11  |-  ( w  =  x  ->  -u w  =  -u x )
1211eleq1d 2523 . . . . . . . . . 10  |-  ( w  =  x  ->  ( -u w  e.  { z  e.  RR  |  -u z  e.  A }  <->  -u x  e.  { z  e.  RR  |  -u z  e.  A }
) )
1312elrab3 3255 . . . . . . . . 9  |-  ( x  e.  RR  ->  (
x  e.  { w  e.  RR  |  -u w  e.  { z  e.  RR  |  -u z  e.  A } }  <->  -u x  e.  {
z  e.  RR  |  -u z  e.  A }
) )
14 renegcl 9873 . . . . . . . . . 10  |-  ( x  e.  RR  ->  -u x  e.  RR )
15 negeq 9803 . . . . . . . . . . . 12  |-  ( z  =  -u x  ->  -u z  =  -u -u x )
1615eleq1d 2523 . . . . . . . . . . 11  |-  ( z  =  -u x  ->  ( -u z  e.  A  <->  -u -u x  e.  A ) )
1716elrab3 3255 . . . . . . . . . 10  |-  ( -u x  e.  RR  ->  (
-u x  e.  {
z  e.  RR  |  -u z  e.  A }  <->  -u -u x  e.  A
) )
1814, 17syl 16 . . . . . . . . 9  |-  ( x  e.  RR  ->  ( -u x  e.  { z  e.  RR  |  -u z  e.  A }  <->  -u -u x  e.  A
) )
19 recn 9571 . . . . . . . . . . 11  |-  ( x  e.  RR  ->  x  e.  CC )
2019negnegd 9913 . . . . . . . . . 10  |-  ( x  e.  RR  ->  -u -u x  =  x )
2120eleq1d 2523 . . . . . . . . 9  |-  ( x  e.  RR  ->  ( -u -u x  e.  A  <->  x  e.  A ) )
2213, 18, 213bitrd 279 . . . . . . . 8  |-  ( x  e.  RR  ->  (
x  e.  { w  e.  RR  |  -u w  e.  { z  e.  RR  |  -u z  e.  A } }  <->  x  e.  A
) )
2322adantl 464 . . . . . . 7  |-  ( ( A  C_  RR  /\  x  e.  RR )  ->  (
x  e.  { w  e.  RR  |  -u w  e.  { z  e.  RR  |  -u z  e.  A } }  <->  x  e.  A
) )
249, 10, 23eqrdav 2452 . . . . . 6  |-  ( A 
C_  RR  ->  { w  e.  RR  |  -u w  e.  { z  e.  RR  |  -u z  e.  A } }  =  A
)
2524supeq1d 7897 . . . . 5  |-  ( A 
C_  RR  ->  sup ( { w  e.  RR  |  -u w  e.  {
z  e.  RR  |  -u z  e.  A } } ,  RR ,  <  )  =  sup ( A ,  RR ,  <  ) )
26253ad2ant1 1015 . . . 4  |-  ( ( A  C_  RR  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  y  <_  x
)  ->  sup ( { w  e.  RR  |  -u w  e.  {
z  e.  RR  |  -u z  e.  A } } ,  RR ,  <  )  =  sup ( A ,  RR ,  <  ) )
2726negeqd 9805 . . 3  |-  ( ( A  C_  RR  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  y  <_  x
)  ->  -u sup ( { w  e.  RR  |  -u w  e.  {
z  e.  RR  |  -u z  e.  A } } ,  RR ,  <  )  =  -u sup ( A ,  RR ,  <  ) )
287, 27eqtrd 2495 . 2  |-  ( ( A  C_  RR  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  y  <_  x
)  ->  sup ( { z  e.  RR  |  -u z  e.  A } ,  RR ,  `'  <  )  =  -u sup ( A ,  RR ,  <  ) )
29 infmrcl 10517 . . . . . 6  |-  ( ( { z  e.  RR  |  -u z  e.  A }  C_  RR  /\  {
z  e.  RR  |  -u z  e.  A }  =/=  (/)  /\  E. x  e.  RR  A. y  e. 
{ z  e.  RR  |  -u z  e.  A } x  <_  y )  ->  sup ( { z  e.  RR  |  -u z  e.  A } ,  RR ,  `'  <  )  e.  RR )
303, 29mp3an1 1309 . . . . 5  |-  ( ( { z  e.  RR  |  -u z  e.  A }  =/=  (/)  /\  E. x  e.  RR  A. y  e. 
{ z  e.  RR  |  -u z  e.  A } x  <_  y )  ->  sup ( { z  e.  RR  |  -u z  e.  A } ,  RR ,  `'  <  )  e.  RR )
311, 2, 30syl2an 475 . . . 4  |-  ( ( ( A  C_  RR  /\  A  =/=  (/) )  /\  E. x  e.  RR  A. y  e.  A  y  <_  x )  ->  sup ( { z  e.  RR  |  -u z  e.  A } ,  RR ,  `'  <  )  e.  RR )
32313impa 1189 . . 3  |-  ( ( A  C_  RR  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  y  <_  x
)  ->  sup ( { z  e.  RR  |  -u z  e.  A } ,  RR ,  `'  <  )  e.  RR )
33 suprcl 10498 . . 3  |-  ( ( A  C_  RR  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  y  <_  x
)  ->  sup ( A ,  RR ,  <  )  e.  RR )
34 recn 9571 . . . 4  |-  ( sup ( { z  e.  RR  |  -u z  e.  A } ,  RR ,  `'  <  )  e.  RR  ->  sup ( { z  e.  RR  |  -u z  e.  A } ,  RR ,  `'  <  )  e.  CC )
35 recn 9571 . . . 4  |-  ( sup ( A ,  RR ,  <  )  e.  RR  ->  sup ( A ,  RR ,  <  )  e.  CC )
36 negcon2 9863 . . . 4  |-  ( ( sup ( { z  e.  RR  |  -u z  e.  A } ,  RR ,  `'  <  )  e.  CC  /\  sup ( A ,  RR ,  <  )  e.  CC )  ->  ( sup ( { z  e.  RR  |  -u z  e.  A } ,  RR ,  `'  <  )  =  -u sup ( A ,  RR ,  <  )  <->  sup ( A ,  RR ,  <  )  =  -u sup ( { z  e.  RR  |  -u z  e.  A } ,  RR ,  `'  <  ) ) )
3734, 35, 36syl2an 475 . . 3  |-  ( ( sup ( { z  e.  RR  |  -u z  e.  A } ,  RR ,  `'  <  )  e.  RR  /\  sup ( A ,  RR ,  <  )  e.  RR )  ->  ( sup ( { z  e.  RR  |  -u z  e.  A } ,  RR ,  `'  <  )  =  -u sup ( A ,  RR ,  <  )  <->  sup ( A ,  RR ,  <  )  =  -u sup ( { z  e.  RR  |  -u z  e.  A } ,  RR ,  `'  <  ) ) )
3832, 33, 37syl2anc 659 . 2  |-  ( ( A  C_  RR  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  y  <_  x
)  ->  ( sup ( { z  e.  RR  |  -u z  e.  A } ,  RR ,  `'  <  )  =  -u sup ( A ,  RR ,  <  )  <->  sup ( A ,  RR ,  <  )  =  -u sup ( { z  e.  RR  |  -u z  e.  A } ,  RR ,  `'  <  ) ) )
3928, 38mpbid 210 1  |-  ( ( A  C_  RR  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  y  <_  x
)  ->  sup ( A ,  RR ,  <  )  =  -u sup ( { z  e.  RR  |  -u z  e.  A } ,  RR ,  `'  <  ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 367    /\ w3a 971    = wceq 1398    e. wcel 1823    =/= wne 2649   A.wral 2804   E.wrex 2805   {crab 2808    C_ wss 3461   (/)c0 3783   class class class wbr 4439   `'ccnv 4987   supcsup 7892   CCcc 9479   RRcr 9480    < clt 9617    <_ cle 9618   -ucneg 9797
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1623  ax-4 1636  ax-5 1709  ax-6 1752  ax-7 1795  ax-8 1825  ax-9 1827  ax-10 1842  ax-11 1847  ax-12 1859  ax-13 2004  ax-ext 2432  ax-sep 4560  ax-nul 4568  ax-pow 4615  ax-pr 4676  ax-un 6565  ax-resscn 9538  ax-1cn 9539  ax-icn 9540  ax-addcl 9541  ax-addrcl 9542  ax-mulcl 9543  ax-mulrcl 9544  ax-mulcom 9545  ax-addass 9546  ax-mulass 9547  ax-distr 9548  ax-i2m1 9549  ax-1ne0 9550  ax-1rid 9551  ax-rnegex 9552  ax-rrecex 9553  ax-cnre 9554  ax-pre-lttri 9555  ax-pre-lttrn 9556  ax-pre-ltadd 9557  ax-pre-mulgt0 9558  ax-pre-sup 9559
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 972  df-3an 973  df-tru 1401  df-ex 1618  df-nf 1622  df-sb 1745  df-eu 2288  df-mo 2289  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2651  df-nel 2652  df-ral 2809  df-rex 2810  df-reu 2811  df-rmo 2812  df-rab 2813  df-v 3108  df-sbc 3325  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-nul 3784  df-if 3930  df-pw 4001  df-sn 4017  df-pr 4019  df-op 4023  df-uni 4236  df-br 4440  df-opab 4498  df-mpt 4499  df-id 4784  df-po 4789  df-so 4790  df-xp 4994  df-rel 4995  df-cnv 4996  df-co 4997  df-dm 4998  df-rn 4999  df-res 5000  df-ima 5001  df-iota 5534  df-fun 5572  df-fn 5573  df-f 5574  df-f1 5575  df-fo 5576  df-f1o 5577  df-fv 5578  df-isom 5579  df-riota 6232  df-ov 6273  df-oprab 6274  df-mpt2 6275  df-er 7303  df-en 7510  df-dom 7511  df-sdom 7512  df-sup 7893  df-pnf 9619  df-mnf 9620  df-xr 9621  df-ltxr 9622  df-le 9623  df-sub 9798  df-neg 9799
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator