MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  suplem2pr Structured version   Unicode version

Theorem suplem2pr 9432
Description: The union of a set of positive reals (if a positive real) is its supremum (the least upper bound). Part of Proposition 9-3.3 of [Gleason] p. 122. (Contributed by NM, 19-May-1996.) (Revised by Mario Carneiro, 12-Jun-2013.) (New usage is discouraged.)
Assertion
Ref Expression
suplem2pr  |-  ( A 
C_  P.  ->  ( ( y  e.  A  ->  -.  U. A  <P  y
)  /\  ( y  <P  U. A  ->  E. z  e.  A  y  <P  z ) ) )
Distinct variable group:    y, z, A

Proof of Theorem suplem2pr
StepHypRef Expression
1 ltrelpr 9377 . . . . . 6  |-  <P  C_  ( P.  X.  P. )
21brel 5048 . . . . 5  |-  ( y 
<P  U. A  ->  (
y  e.  P.  /\  U. A  e.  P. )
)
32simpld 459 . . . 4  |-  ( y 
<P  U. A  ->  y  e.  P. )
4 ralnex 2910 . . . . . . . . 9  |-  ( A. z  e.  A  -.  y  <P  z  <->  -.  E. z  e.  A  y  <P  z )
5 ssel2 3499 . . . . . . . . . . . 12  |-  ( ( A  C_  P.  /\  z  e.  A )  ->  z  e.  P. )
6 ltsopr 9411 . . . . . . . . . . . . . . . 16  |-  <P  Or  P.
7 sotric 4826 . . . . . . . . . . . . . . . 16  |-  ( ( 
<P  Or  P.  /\  (
y  e.  P.  /\  z  e.  P. )
)  ->  ( y  <P  z  <->  -.  ( y  =  z  \/  z  <P  y ) ) )
86, 7mpan 670 . . . . . . . . . . . . . . 15  |-  ( ( y  e.  P.  /\  z  e.  P. )  ->  ( y  <P  z  <->  -.  ( y  =  z  \/  z  <P  y
) ) )
98con2bid 329 . . . . . . . . . . . . . 14  |-  ( ( y  e.  P.  /\  z  e.  P. )  ->  ( ( y  =  z  \/  z  <P 
y )  <->  -.  y  <P  z ) )
109ancoms 453 . . . . . . . . . . . . 13  |-  ( ( z  e.  P.  /\  y  e.  P. )  ->  ( ( y  =  z  \/  z  <P 
y )  <->  -.  y  <P  z ) )
11 ltprord 9409 . . . . . . . . . . . . . . 15  |-  ( ( z  e.  P.  /\  y  e.  P. )  ->  ( z  <P  y  <->  z 
C.  y ) )
1211orbi2d 701 . . . . . . . . . . . . . 14  |-  ( ( z  e.  P.  /\  y  e.  P. )  ->  ( ( y  =  z  \/  z  <P 
y )  <->  ( y  =  z  \/  z  C.  y ) ) )
13 sspss 3603 . . . . . . . . . . . . . . 15  |-  ( z 
C_  y  <->  ( z  C.  y  \/  z  =  y ) )
14 equcom 1743 . . . . . . . . . . . . . . . 16  |-  ( z  =  y  <->  y  =  z )
1514orbi2i 519 . . . . . . . . . . . . . . 15  |-  ( ( z  C.  y  \/  z  =  y )  <->  ( z  C.  y  \/  y  =  z )
)
16 orcom 387 . . . . . . . . . . . . . . 15  |-  ( ( z  C.  y  \/  y  =  z )  <->  ( y  =  z  \/  z  C.  y )
)
1713, 15, 163bitri 271 . . . . . . . . . . . . . 14  |-  ( z 
C_  y  <->  ( y  =  z  \/  z  C.  y ) )
1812, 17syl6bbr 263 . . . . . . . . . . . . 13  |-  ( ( z  e.  P.  /\  y  e.  P. )  ->  ( ( y  =  z  \/  z  <P 
y )  <->  z  C_  y ) )
1910, 18bitr3d 255 . . . . . . . . . . . 12  |-  ( ( z  e.  P.  /\  y  e.  P. )  ->  ( -.  y  <P 
z  <->  z  C_  y
) )
205, 19sylan 471 . . . . . . . . . . 11  |-  ( ( ( A  C_  P.  /\  z  e.  A )  /\  y  e.  P. )  ->  ( -.  y  <P  z  <->  z  C_  y
) )
2120an32s 802 . . . . . . . . . 10  |-  ( ( ( A  C_  P.  /\  y  e.  P. )  /\  z  e.  A
)  ->  ( -.  y  <P  z  <->  z  C_  y ) )
2221ralbidva 2900 . . . . . . . . 9  |-  ( ( A  C_  P.  /\  y  e.  P. )  ->  ( A. z  e.  A  -.  y  <P  z  <->  A. z  e.  A  z  C_  y ) )
234, 22syl5bbr 259 . . . . . . . 8  |-  ( ( A  C_  P.  /\  y  e.  P. )  ->  ( -.  E. z  e.  A  y  <P  z  <->  A. z  e.  A  z  C_  y ) )
24 unissb 4277 . . . . . . . 8  |-  ( U. A  C_  y  <->  A. z  e.  A  z  C_  y )
2523, 24syl6bbr 263 . . . . . . 7  |-  ( ( A  C_  P.  /\  y  e.  P. )  ->  ( -.  E. z  e.  A  y  <P  z  <->  U. A  C_  y ) )
26 ssnpss 3607 . . . . . . . 8  |-  ( U. A  C_  y  ->  -.  y  C.  U. A )
27 ltprord 9409 . . . . . . . . . 10  |-  ( ( y  e.  P.  /\  U. A  e.  P. )  ->  ( y  <P  U. A  <->  y 
C.  U. A ) )
2827biimpd 207 . . . . . . . . 9  |-  ( ( y  e.  P.  /\  U. A  e.  P. )  ->  ( y  <P  U. A  ->  y  C.  U. A ) )
292, 28mpcom 36 . . . . . . . 8  |-  ( y 
<P  U. A  ->  y  C. 
U. A )
3026, 29nsyl 121 . . . . . . 7  |-  ( U. A  C_  y  ->  -.  y  <P  U. A )
3125, 30syl6bi 228 . . . . . 6  |-  ( ( A  C_  P.  /\  y  e.  P. )  ->  ( -.  E. z  e.  A  y  <P  z  ->  -.  y  <P  U. A ) )
3231con4d 105 . . . . 5  |-  ( ( A  C_  P.  /\  y  e.  P. )  ->  (
y  <P  U. A  ->  E. z  e.  A  y  <P  z ) )
3332ex 434 . . . 4  |-  ( A 
C_  P.  ->  ( y  e.  P.  ->  (
y  <P  U. A  ->  E. z  e.  A  y  <P  z ) ) )
343, 33syl5 32 . . 3  |-  ( A 
C_  P.  ->  ( y 
<P  U. A  ->  (
y  <P  U. A  ->  E. z  e.  A  y  <P  z ) ) )
3534pm2.43d 48 . 2  |-  ( A 
C_  P.  ->  ( y 
<P  U. A  ->  E. z  e.  A  y  <P  z ) )
36 elssuni 4275 . . . 4  |-  ( y  e.  A  ->  y  C_ 
U. A )
37 ssnpss 3607 . . . 4  |-  ( y 
C_  U. A  ->  -.  U. A  C.  y )
3836, 37syl 16 . . 3  |-  ( y  e.  A  ->  -.  U. A  C.  y )
391brel 5048 . . . 4  |-  ( U. A  <P  y  ->  ( U. A  e.  P.  /\  y  e.  P. )
)
40 ltprord 9409 . . . . 5  |-  ( ( U. A  e.  P.  /\  y  e.  P. )  ->  ( U. A  <P  y  <->  U. A  C.  y ) )
4140biimpd 207 . . . 4  |-  ( ( U. A  e.  P.  /\  y  e.  P. )  ->  ( U. A  <P  y  ->  U. A  C.  y
) )
4239, 41mpcom 36 . . 3  |-  ( U. A  <P  y  ->  U. A  C.  y )
4338, 42nsyl 121 . 2  |-  ( y  e.  A  ->  -.  U. A  <P  y )
4435, 43jctil 537 1  |-  ( A 
C_  P.  ->  ( ( y  e.  A  ->  -.  U. A  <P  y
)  /\  ( y  <P  U. A  ->  E. z  e.  A  y  <P  z ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    \/ wo 368    /\ wa 369    e. wcel 1767   A.wral 2814   E.wrex 2815    C_ wss 3476    C. wpss 3477   U.cuni 4245   class class class wbr 4447    Or wor 4799   P.cnp 9238    <P cltp 9242
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6577
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2819  df-rex 2820  df-reu 2821  df-rmo 2822  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-pss 3492  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-tp 4032  df-op 4034  df-uni 4246  df-iun 4327  df-br 4448  df-opab 4506  df-mpt 4507  df-tr 4541  df-eprel 4791  df-id 4795  df-po 4800  df-so 4801  df-fr 4838  df-we 4840  df-ord 4881  df-on 4882  df-lim 4883  df-suc 4884  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5551  df-fun 5590  df-fn 5591  df-f 5592  df-f1 5593  df-fo 5594  df-f1o 5595  df-fv 5596  df-ov 6288  df-oprab 6289  df-mpt2 6290  df-om 6686  df-1st 6785  df-2nd 6786  df-recs 7043  df-rdg 7077  df-oadd 7135  df-omul 7136  df-er 7312  df-ni 9251  df-mi 9253  df-lti 9254  df-ltpq 9289  df-enq 9290  df-nq 9291  df-ltnq 9297  df-np 9360  df-ltp 9364
This theorem is referenced by:  supexpr  9433
  Copyright terms: Public domain W3C validator