MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  suplem1pr Structured version   Unicode version

Theorem suplem1pr 9242
Description: The union of a nonempty, bounded set of positive reals is a positive real. Part of Proposition 9-3.3 of [Gleason] p. 122. (Contributed by NM, 19-May-1996.) (Revised by Mario Carneiro, 12-Jun-2013.) (New usage is discouraged.)
Assertion
Ref Expression
suplem1pr  |-  ( ( A  =/=  (/)  /\  E. x  e.  P.  A. y  e.  A  y  <P  x )  ->  U. A  e. 
P. )
Distinct variable group:    x, y, A

Proof of Theorem suplem1pr
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 ltrelpr 9188 . . . . . . . . 9  |-  <P  C_  ( P.  X.  P. )
21brel 4908 . . . . . . . 8  |-  ( y 
<P  x  ->  ( y  e.  P.  /\  x  e.  P. ) )
32simpld 459 . . . . . . 7  |-  ( y 
<P  x  ->  y  e. 
P. )
43ralimi 2812 . . . . . 6  |-  ( A. y  e.  A  y  <P  x  ->  A. y  e.  A  y  e.  P. )
5 dfss3 3367 . . . . . 6  |-  ( A 
C_  P.  <->  A. y  e.  A  y  e.  P. )
64, 5sylibr 212 . . . . 5  |-  ( A. y  e.  A  y  <P  x  ->  A  C_  P. )
76rexlimivw 2858 . . . 4  |-  ( E. x  e.  P.  A. y  e.  A  y  <P  x  ->  A  C_  P. )
87adantl 466 . . 3  |-  ( ( A  =/=  (/)  /\  E. x  e.  P.  A. y  e.  A  y  <P  x )  ->  A  C_  P. )
9 n0 3667 . . . . 5  |-  ( A  =/=  (/)  <->  E. z  z  e.  A )
10 ssel 3371 . . . . . . 7  |-  ( A 
C_  P.  ->  ( z  e.  A  ->  z  e.  P. ) )
11 prn0 9179 . . . . . . . . . 10  |-  ( z  e.  P.  ->  z  =/=  (/) )
12 0pss 3737 . . . . . . . . . 10  |-  ( (/)  C.  z  <->  z  =/=  (/) )
1311, 12sylibr 212 . . . . . . . . 9  |-  ( z  e.  P.  ->  (/)  C.  z
)
14 elssuni 4142 . . . . . . . . 9  |-  ( z  e.  A  ->  z  C_ 
U. A )
15 psssstr 3483 . . . . . . . . 9  |-  ( (
(/)  C.  z  /\  z  C_ 
U. A )  ->  (/)  C.  U. A )
1613, 14, 15syl2an 477 . . . . . . . 8  |-  ( ( z  e.  P.  /\  z  e.  A )  -> 
(/)  C.  U. A )
1716expcom 435 . . . . . . 7  |-  ( z  e.  A  ->  (
z  e.  P.  ->  (/)  C. 
U. A ) )
1810, 17sylcom 29 . . . . . 6  |-  ( A 
C_  P.  ->  ( z  e.  A  ->  (/)  C.  U. A
) )
1918exlimdv 1690 . . . . 5  |-  ( A 
C_  P.  ->  ( E. z  z  e.  A  -> 
(/)  C.  U. A ) )
209, 19syl5bi 217 . . . 4  |-  ( A 
C_  P.  ->  ( A  =/=  (/)  ->  (/)  C.  U. A
) )
21 prpssnq 9180 . . . . . . 7  |-  ( x  e.  P.  ->  x  C. 
Q. )
2221adantl 466 . . . . . 6  |-  ( ( A  C_  P.  /\  x  e.  P. )  ->  x  C. 
Q. )
23 ltprord 9220 . . . . . . . . . 10  |-  ( ( y  e.  P.  /\  x  e.  P. )  ->  ( y  <P  x  <->  y 
C.  x ) )
24 pssss 3472 . . . . . . . . . 10  |-  ( y 
C.  x  ->  y  C_  x )
2523, 24syl6bi 228 . . . . . . . . 9  |-  ( ( y  e.  P.  /\  x  e.  P. )  ->  ( y  <P  x  ->  y  C_  x )
)
262, 25mpcom 36 . . . . . . . 8  |-  ( y 
<P  x  ->  y  C_  x )
2726ralimi 2812 . . . . . . 7  |-  ( A. y  e.  A  y  <P  x  ->  A. y  e.  A  y  C_  x )
28 unissb 4144 . . . . . . 7  |-  ( U. A  C_  x  <->  A. y  e.  A  y  C_  x )
2927, 28sylibr 212 . . . . . 6  |-  ( A. y  e.  A  y  <P  x  ->  U. A  C_  x )
30 sspsstr 3482 . . . . . . 7  |-  ( ( U. A  C_  x  /\  x  C.  Q. )  ->  U. A  C.  Q. )
3130expcom 435 . . . . . 6  |-  ( x 
C.  Q.  ->  ( U. A  C_  x  ->  U. A  C. 
Q. ) )
3222, 29, 31syl2im 38 . . . . 5  |-  ( ( A  C_  P.  /\  x  e.  P. )  ->  ( A. y  e.  A  y  <P  x  ->  U. A  C. 
Q. ) )
3332rexlimdva 2862 . . . 4  |-  ( A 
C_  P.  ->  ( E. x  e.  P.  A. y  e.  A  y  <P  x  ->  U. A  C.  Q. ) )
3420, 33anim12d 563 . . 3  |-  ( A 
C_  P.  ->  ( ( A  =/=  (/)  /\  E. x  e.  P.  A. y  e.  A  y  <P  x )  ->  ( (/)  C.  U. A  /\  U. A  C.  Q. )
) )
358, 34mpcom 36 . 2  |-  ( ( A  =/=  (/)  /\  E. x  e.  P.  A. y  e.  A  y  <P  x )  ->  ( (/)  C.  U. A  /\  U. A  C.  Q. )
)
36 prcdnq 9183 . . . . . . . . . . . . 13  |-  ( ( z  e.  P.  /\  x  e.  z )  ->  ( y  <Q  x  ->  y  e.  z ) )
3736ex 434 . . . . . . . . . . . 12  |-  ( z  e.  P.  ->  (
x  e.  z  -> 
( y  <Q  x  ->  y  e.  z ) ) )
3837com3r 79 . . . . . . . . . . 11  |-  ( y 
<Q  x  ->  ( z  e.  P.  ->  (
x  e.  z  -> 
y  e.  z ) ) )
3910, 38sylan9 657 . . . . . . . . . 10  |-  ( ( A  C_  P.  /\  y  <Q  x )  ->  (
z  e.  A  -> 
( x  e.  z  ->  y  e.  z ) ) )
4039reximdvai 2847 . . . . . . . . 9  |-  ( ( A  C_  P.  /\  y  <Q  x )  ->  ( E. z  e.  A  x  e.  z  ->  E. z  e.  A  y  e.  z ) )
41 eluni2 4116 . . . . . . . . 9  |-  ( x  e.  U. A  <->  E. z  e.  A  x  e.  z )
42 eluni2 4116 . . . . . . . . 9  |-  ( y  e.  U. A  <->  E. z  e.  A  y  e.  z )
4340, 41, 423imtr4g 270 . . . . . . . 8  |-  ( ( A  C_  P.  /\  y  <Q  x )  ->  (
x  e.  U. A  ->  y  e.  U. A
) )
4443ex 434 . . . . . . 7  |-  ( A 
C_  P.  ->  ( y 
<Q  x  ->  ( x  e.  U. A  -> 
y  e.  U. A
) ) )
4544com23 78 . . . . . 6  |-  ( A 
C_  P.  ->  ( x  e.  U. A  -> 
( y  <Q  x  ->  y  e.  U. A
) ) )
4645alrimdv 1687 . . . . 5  |-  ( A 
C_  P.  ->  ( x  e.  U. A  ->  A. y ( y  <Q  x  ->  y  e.  U. A ) ) )
47 eluni 4115 . . . . . 6  |-  ( x  e.  U. A  <->  E. z
( x  e.  z  /\  z  e.  A
) )
48 prnmax 9185 . . . . . . . . . . . . 13  |-  ( ( z  e.  P.  /\  x  e.  z )  ->  E. y  e.  z  x  <Q  y )
4948ex 434 . . . . . . . . . . . 12  |-  ( z  e.  P.  ->  (
x  e.  z  ->  E. y  e.  z  x  <Q  y ) )
5010, 49syl6 33 . . . . . . . . . . 11  |-  ( A 
C_  P.  ->  ( z  e.  A  ->  (
x  e.  z  ->  E. y  e.  z  x  <Q  y ) ) )
5150com23 78 . . . . . . . . . 10  |-  ( A 
C_  P.  ->  ( x  e.  z  ->  (
z  e.  A  ->  E. y  e.  z  x  <Q  y ) ) )
5251imp 429 . . . . . . . . 9  |-  ( ( A  C_  P.  /\  x  e.  z )  ->  (
z  e.  A  ->  E. y  e.  z  x  <Q  y ) )
53 ssrexv 3438 . . . . . . . . . 10  |-  ( z 
C_  U. A  ->  ( E. y  e.  z  x  <Q  y  ->  E. y  e.  U. A x  <Q  y ) )
5414, 53syl 16 . . . . . . . . 9  |-  ( z  e.  A  ->  ( E. y  e.  z  x  <Q  y  ->  E. y  e.  U. A x  <Q  y ) )
5552, 54sylcom 29 . . . . . . . 8  |-  ( ( A  C_  P.  /\  x  e.  z )  ->  (
z  e.  A  ->  E. y  e.  U. A x  <Q  y ) )
5655expimpd 603 . . . . . . 7  |-  ( A 
C_  P.  ->  ( ( x  e.  z  /\  z  e.  A )  ->  E. y  e.  U. A x  <Q  y ) )
5756exlimdv 1690 . . . . . 6  |-  ( A 
C_  P.  ->  ( E. z ( x  e.  z  /\  z  e.  A )  ->  E. y  e.  U. A x  <Q  y ) )
5847, 57syl5bi 217 . . . . 5  |-  ( A 
C_  P.  ->  ( x  e.  U. A  ->  E. y  e.  U. A x  <Q  y ) )
5946, 58jcad 533 . . . 4  |-  ( A 
C_  P.  ->  ( x  e.  U. A  -> 
( A. y ( y  <Q  x  ->  y  e.  U. A )  /\  E. y  e. 
U. A x  <Q  y ) ) )
6059ralrimiv 2819 . . 3  |-  ( A 
C_  P.  ->  A. x  e.  U. A ( A. y ( y  <Q  x  ->  y  e.  U. A )  /\  E. y  e.  U. A x 
<Q  y ) )
618, 60syl 16 . 2  |-  ( ( A  =/=  (/)  /\  E. x  e.  P.  A. y  e.  A  y  <P  x )  ->  A. x  e.  U. A ( A. y ( y  <Q  x  ->  y  e.  U. A )  /\  E. y  e.  U. A x 
<Q  y ) )
62 elnp 9177 . 2  |-  ( U. A  e.  P.  <->  ( ( (/)  C.  U. A  /\  U. A  C.  Q. )  /\  A. x  e.  U. A
( A. y ( y  <Q  x  ->  y  e.  U. A )  /\  E. y  e. 
U. A x  <Q  y ) ) )
6335, 61, 62sylanbrc 664 1  |-  ( ( A  =/=  (/)  /\  E. x  e.  P.  A. y  e.  A  y  <P  x )  ->  U. A  e. 
P. )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369   A.wal 1367   E.wex 1586    e. wcel 1756    =/= wne 2620   A.wral 2736   E.wrex 2737    C_ wss 3349    C. wpss 3350   (/)c0 3658   U.cuni 4112   class class class wbr 4313   Q.cnq 9040    <Q cltq 9046   P.cnp 9047    <P cltp 9051
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-sep 4434  ax-nul 4442  ax-pow 4491  ax-pr 4552  ax-un 6393  ax-inf2 7868
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2577  df-ne 2622  df-ral 2741  df-rex 2742  df-rab 2745  df-v 2995  df-sbc 3208  df-dif 3352  df-un 3354  df-in 3356  df-ss 3363  df-pss 3365  df-nul 3659  df-if 3813  df-pw 3883  df-sn 3899  df-pr 3901  df-tp 3903  df-op 3905  df-uni 4113  df-br 4314  df-opab 4372  df-tr 4407  df-eprel 4653  df-po 4662  df-so 4663  df-fr 4700  df-we 4702  df-ord 4743  df-on 4744  df-lim 4745  df-suc 4746  df-xp 4867  df-rel 4868  df-om 6498  df-ni 9062  df-nq 9102  df-ltnq 9108  df-np 9171  df-ltp 9175
This theorem is referenced by:  supexpr  9244
  Copyright terms: Public domain W3C validator