MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  supisolem Structured version   Unicode version

Theorem supisolem 7967
Description: Lemma for supiso 7969. (Contributed by Mario Carneiro, 24-Dec-2016.)
Hypotheses
Ref Expression
supiso.1  |-  ( ph  ->  F  Isom  R ,  S  ( A ,  B ) )
supiso.2  |-  ( ph  ->  C  C_  A )
Assertion
Ref Expression
supisolem  |-  ( (
ph  /\  D  e.  A )  ->  (
( A. y  e.  C  -.  D R y  /\  A. y  e.  A  ( y R D  ->  E. z  e.  C  y R
z ) )  <->  ( A. w  e.  ( F " C )  -.  ( F `  D ) S w  /\  A. w  e.  B  ( w S ( F `  D )  ->  E. v  e.  ( F " C
) w S v ) ) ) )
Distinct variable groups:    w, v,
y, z, A    v, C, w, y, z    w, D, y, z    ph, w    v, F, w, y, z   
w, R, y, z   
v, S, w, y, z    v, B, w, y, z
Allowed substitution hints:    ph( y, z, v)    D( v)    R( v)

Proof of Theorem supisolem
StepHypRef Expression
1 supiso.1 . . 3  |-  ( ph  ->  F  Isom  R ,  S  ( A ,  B ) )
2 supiso.2 . . 3  |-  ( ph  ->  C  C_  A )
31, 2jca 532 . 2  |-  ( ph  ->  ( F  Isom  R ,  S  ( A ,  B )  /\  C  C_  A ) )
4 simpll 754 . . . . . . . 8  |-  ( ( ( F  Isom  R ,  S  ( A ,  B )  /\  C  C_  A )  /\  D  e.  A )  ->  F  Isom  R ,  S  ( A ,  B ) )
54adantr 465 . . . . . . 7  |-  ( ( ( ( F  Isom  R ,  S  ( A ,  B )  /\  C  C_  A )  /\  D  e.  A )  /\  y  e.  C
)  ->  F  Isom  R ,  S  ( A ,  B ) )
6 simplr 756 . . . . . . 7  |-  ( ( ( ( F  Isom  R ,  S  ( A ,  B )  /\  C  C_  A )  /\  D  e.  A )  /\  y  e.  C
)  ->  D  e.  A )
7 simplr 756 . . . . . . . 8  |-  ( ( ( F  Isom  R ,  S  ( A ,  B )  /\  C  C_  A )  /\  D  e.  A )  ->  C  C_  A )
87sselda 3444 . . . . . . 7  |-  ( ( ( ( F  Isom  R ,  S  ( A ,  B )  /\  C  C_  A )  /\  D  e.  A )  /\  y  e.  C
)  ->  y  e.  A )
9 isorel 6207 . . . . . . 7  |-  ( ( F  Isom  R ,  S  ( A ,  B )  /\  ( D  e.  A  /\  y  e.  A )
)  ->  ( D R y  <->  ( F `  D ) S ( F `  y ) ) )
105, 6, 8, 9syl12anc 1230 . . . . . 6  |-  ( ( ( ( F  Isom  R ,  S  ( A ,  B )  /\  C  C_  A )  /\  D  e.  A )  /\  y  e.  C
)  ->  ( D R y  <->  ( F `  D ) S ( F `  y ) ) )
1110notbid 294 . . . . 5  |-  ( ( ( ( F  Isom  R ,  S  ( A ,  B )  /\  C  C_  A )  /\  D  e.  A )  /\  y  e.  C
)  ->  ( -.  D R y  <->  -.  ( F `  D ) S ( F `  y ) ) )
1211ralbidva 2842 . . . 4  |-  ( ( ( F  Isom  R ,  S  ( A ,  B )  /\  C  C_  A )  /\  D  e.  A )  ->  ( A. y  e.  C  -.  D R y  <->  A. y  e.  C  -.  ( F `  D ) S ( F `  y ) ) )
13 isof1o 6206 . . . . . . 7  |-  ( F 
Isom  R ,  S  ( A ,  B )  ->  F : A -1-1-onto-> B
)
144, 13syl 17 . . . . . 6  |-  ( ( ( F  Isom  R ,  S  ( A ,  B )  /\  C  C_  A )  /\  D  e.  A )  ->  F : A -1-1-onto-> B )
15 f1ofn 5802 . . . . . 6  |-  ( F : A -1-1-onto-> B  ->  F  Fn  A )
1614, 15syl 17 . . . . 5  |-  ( ( ( F  Isom  R ,  S  ( A ,  B )  /\  C  C_  A )  /\  D  e.  A )  ->  F  Fn  A )
17 breq2 4401 . . . . . . 7  |-  ( w  =  ( F `  y )  ->  (
( F `  D
) S w  <->  ( F `  D ) S ( F `  y ) ) )
1817notbid 294 . . . . . 6  |-  ( w  =  ( F `  y )  ->  ( -.  ( F `  D
) S w  <->  -.  ( F `  D ) S ( F `  y ) ) )
1918ralima 6135 . . . . 5  |-  ( ( F  Fn  A  /\  C  C_  A )  -> 
( A. w  e.  ( F " C
)  -.  ( F `
 D ) S w  <->  A. y  e.  C  -.  ( F `  D
) S ( F `
 y ) ) )
2016, 7, 19syl2anc 661 . . . 4  |-  ( ( ( F  Isom  R ,  S  ( A ,  B )  /\  C  C_  A )  /\  D  e.  A )  ->  ( A. w  e.  ( F " C )  -.  ( F `  D
) S w  <->  A. y  e.  C  -.  ( F `  D ) S ( F `  y ) ) )
2112, 20bitr4d 258 . . 3  |-  ( ( ( F  Isom  R ,  S  ( A ,  B )  /\  C  C_  A )  /\  D  e.  A )  ->  ( A. y  e.  C  -.  D R y  <->  A. w  e.  ( F " C
)  -.  ( F `
 D ) S w ) )
224adantr 465 . . . . . . 7  |-  ( ( ( ( F  Isom  R ,  S  ( A ,  B )  /\  C  C_  A )  /\  D  e.  A )  /\  y  e.  A
)  ->  F  Isom  R ,  S  ( A ,  B ) )
23 simpr 461 . . . . . . 7  |-  ( ( ( ( F  Isom  R ,  S  ( A ,  B )  /\  C  C_  A )  /\  D  e.  A )  /\  y  e.  A
)  ->  y  e.  A )
24 simplr 756 . . . . . . 7  |-  ( ( ( ( F  Isom  R ,  S  ( A ,  B )  /\  C  C_  A )  /\  D  e.  A )  /\  y  e.  A
)  ->  D  e.  A )
25 isorel 6207 . . . . . . 7  |-  ( ( F  Isom  R ,  S  ( A ,  B )  /\  (
y  e.  A  /\  D  e.  A )
)  ->  ( y R D  <->  ( F `  y ) S ( F `  D ) ) )
2622, 23, 24, 25syl12anc 1230 . . . . . 6  |-  ( ( ( ( F  Isom  R ,  S  ( A ,  B )  /\  C  C_  A )  /\  D  e.  A )  /\  y  e.  A
)  ->  ( y R D  <->  ( F `  y ) S ( F `  D ) ) )
2722adantr 465 . . . . . . . . 9  |-  ( ( ( ( ( F 
Isom  R ,  S  ( A ,  B )  /\  C  C_  A
)  /\  D  e.  A )  /\  y  e.  A )  /\  z  e.  C )  ->  F  Isom  R ,  S  ( A ,  B ) )
28 simplr 756 . . . . . . . . 9  |-  ( ( ( ( ( F 
Isom  R ,  S  ( A ,  B )  /\  C  C_  A
)  /\  D  e.  A )  /\  y  e.  A )  /\  z  e.  C )  ->  y  e.  A )
297adantr 465 . . . . . . . . . 10  |-  ( ( ( ( F  Isom  R ,  S  ( A ,  B )  /\  C  C_  A )  /\  D  e.  A )  /\  y  e.  A
)  ->  C  C_  A
)
3029sselda 3444 . . . . . . . . 9  |-  ( ( ( ( ( F 
Isom  R ,  S  ( A ,  B )  /\  C  C_  A
)  /\  D  e.  A )  /\  y  e.  A )  /\  z  e.  C )  ->  z  e.  A )
31 isorel 6207 . . . . . . . . 9  |-  ( ( F  Isom  R ,  S  ( A ,  B )  /\  (
y  e.  A  /\  z  e.  A )
)  ->  ( y R z  <->  ( F `  y ) S ( F `  z ) ) )
3227, 28, 30, 31syl12anc 1230 . . . . . . . 8  |-  ( ( ( ( ( F 
Isom  R ,  S  ( A ,  B )  /\  C  C_  A
)  /\  D  e.  A )  /\  y  e.  A )  /\  z  e.  C )  ->  (
y R z  <->  ( F `  y ) S ( F `  z ) ) )
3332rexbidva 2917 . . . . . . 7  |-  ( ( ( ( F  Isom  R ,  S  ( A ,  B )  /\  C  C_  A )  /\  D  e.  A )  /\  y  e.  A
)  ->  ( E. z  e.  C  y R z  <->  E. z  e.  C  ( F `  y ) S ( F `  z ) ) )
3416adantr 465 . . . . . . . 8  |-  ( ( ( ( F  Isom  R ,  S  ( A ,  B )  /\  C  C_  A )  /\  D  e.  A )  /\  y  e.  A
)  ->  F  Fn  A )
35 breq2 4401 . . . . . . . . 9  |-  ( v  =  ( F `  z )  ->  (
( F `  y
) S v  <->  ( F `  y ) S ( F `  z ) ) )
3635rexima 6134 . . . . . . . 8  |-  ( ( F  Fn  A  /\  C  C_  A )  -> 
( E. v  e.  ( F " C
) ( F `  y ) S v  <->  E. z  e.  C  ( F `  y ) S ( F `  z ) ) )
3734, 29, 36syl2anc 661 . . . . . . 7  |-  ( ( ( ( F  Isom  R ,  S  ( A ,  B )  /\  C  C_  A )  /\  D  e.  A )  /\  y  e.  A
)  ->  ( E. v  e.  ( F " C ) ( F `
 y ) S v  <->  E. z  e.  C  ( F `  y ) S ( F `  z ) ) )
3833, 37bitr4d 258 . . . . . 6  |-  ( ( ( ( F  Isom  R ,  S  ( A ,  B )  /\  C  C_  A )  /\  D  e.  A )  /\  y  e.  A
)  ->  ( E. z  e.  C  y R z  <->  E. v  e.  ( F " C
) ( F `  y ) S v ) )
3926, 38imbi12d 320 . . . . 5  |-  ( ( ( ( F  Isom  R ,  S  ( A ,  B )  /\  C  C_  A )  /\  D  e.  A )  /\  y  e.  A
)  ->  ( (
y R D  ->  E. z  e.  C  y R z )  <->  ( ( F `  y ) S ( F `  D )  ->  E. v  e.  ( F " C
) ( F `  y ) S v ) ) )
4039ralbidva 2842 . . . 4  |-  ( ( ( F  Isom  R ,  S  ( A ,  B )  /\  C  C_  A )  /\  D  e.  A )  ->  ( A. y  e.  A  ( y R D  ->  E. z  e.  C  y R z )  <->  A. y  e.  A  ( ( F `  y ) S ( F `  D )  ->  E. v  e.  ( F " C
) ( F `  y ) S v ) ) )
41 f1ofo 5808 . . . . 5  |-  ( F : A -1-1-onto-> B  ->  F : A -onto-> B )
42 breq1 4400 . . . . . . 7  |-  ( ( F `  y )  =  w  ->  (
( F `  y
) S ( F `
 D )  <->  w S
( F `  D
) ) )
43 breq1 4400 . . . . . . . 8  |-  ( ( F `  y )  =  w  ->  (
( F `  y
) S v  <->  w S
v ) )
4443rexbidv 2920 . . . . . . 7  |-  ( ( F `  y )  =  w  ->  ( E. v  e.  ( F " C ) ( F `  y ) S v  <->  E. v  e.  ( F " C
) w S v ) )
4542, 44imbi12d 320 . . . . . 6  |-  ( ( F `  y )  =  w  ->  (
( ( F `  y ) S ( F `  D )  ->  E. v  e.  ( F " C ) ( F `  y
) S v )  <-> 
( w S ( F `  D )  ->  E. v  e.  ( F " C ) w S v ) ) )
4645cbvfo 6177 . . . . 5  |-  ( F : A -onto-> B  -> 
( A. y  e.  A  ( ( F `
 y ) S ( F `  D
)  ->  E. v  e.  ( F " C
) ( F `  y ) S v )  <->  A. w  e.  B  ( w S ( F `  D )  ->  E. v  e.  ( F " C ) w S v ) ) )
4714, 41, 463syl 18 . . . 4  |-  ( ( ( F  Isom  R ,  S  ( A ,  B )  /\  C  C_  A )  /\  D  e.  A )  ->  ( A. y  e.  A  ( ( F `  y ) S ( F `  D )  ->  E. v  e.  ( F " C ) ( F `  y
) S v )  <->  A. w  e.  B  ( w S ( F `  D )  ->  E. v  e.  ( F " C ) w S v ) ) )
4840, 47bitrd 255 . . 3  |-  ( ( ( F  Isom  R ,  S  ( A ,  B )  /\  C  C_  A )  /\  D  e.  A )  ->  ( A. y  e.  A  ( y R D  ->  E. z  e.  C  y R z )  <->  A. w  e.  B  ( w S ( F `  D )  ->  E. v  e.  ( F " C
) w S v ) ) )
4921, 48anbi12d 711 . 2  |-  ( ( ( F  Isom  R ,  S  ( A ,  B )  /\  C  C_  A )  /\  D  e.  A )  ->  (
( A. y  e.  C  -.  D R y  /\  A. y  e.  A  ( y R D  ->  E. z  e.  C  y R
z ) )  <->  ( A. w  e.  ( F " C )  -.  ( F `  D ) S w  /\  A. w  e.  B  ( w S ( F `  D )  ->  E. v  e.  ( F " C
) w S v ) ) ) )
503, 49sylan 471 1  |-  ( (
ph  /\  D  e.  A )  ->  (
( A. y  e.  C  -.  D R y  /\  A. y  e.  A  ( y R D  ->  E. z  e.  C  y R
z ) )  <->  ( A. w  e.  ( F " C )  -.  ( F `  D ) S w  /\  A. w  e.  B  ( w S ( F `  D )  ->  E. v  e.  ( F " C
) w S v ) ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 186    /\ wa 369    = wceq 1407    e. wcel 1844   A.wral 2756   E.wrex 2757    C_ wss 3416   class class class wbr 4397   "cima 4828    Fn wfn 5566   -onto->wfo 5569   -1-1-onto->wf1o 5570   ` cfv 5571    Isom wiso 5572
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1641  ax-4 1654  ax-5 1727  ax-6 1773  ax-7 1816  ax-9 1848  ax-10 1863  ax-11 1868  ax-12 1880  ax-13 2028  ax-ext 2382  ax-sep 4519  ax-nul 4527  ax-pr 4632
This theorem depends on definitions:  df-bi 187  df-or 370  df-an 371  df-3an 978  df-tru 1410  df-ex 1636  df-nf 1640  df-sb 1766  df-eu 2244  df-mo 2245  df-clab 2390  df-cleq 2396  df-clel 2399  df-nfc 2554  df-ne 2602  df-ral 2761  df-rex 2762  df-rab 2765  df-v 3063  df-sbc 3280  df-dif 3419  df-un 3421  df-in 3423  df-ss 3430  df-nul 3741  df-if 3888  df-sn 3975  df-pr 3977  df-op 3981  df-uni 4194  df-br 4398  df-opab 4456  df-mpt 4457  df-id 4740  df-xp 4831  df-rel 4832  df-cnv 4833  df-co 4834  df-dm 4835  df-rn 4836  df-res 4837  df-ima 4838  df-iota 5535  df-fun 5573  df-fn 5574  df-f 5575  df-f1 5576  df-fo 5577  df-f1o 5578  df-fv 5579  df-isom 5580
This theorem is referenced by:  supisoex  7968  supiso  7969
  Copyright terms: Public domain W3C validator