MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  supiso Unicode version

Theorem supiso 7433
Description: Image of a supremum under an isomorphism. (Contributed by Mario Carneiro, 24-Dec-2016.)
Hypotheses
Ref Expression
supiso.1  |-  ( ph  ->  F  Isom  R ,  S  ( A ,  B ) )
supiso.2  |-  ( ph  ->  C  C_  A )
supisoex.3  |-  ( ph  ->  E. x  e.  A  ( A. y  e.  C  -.  x R y  /\  A. y  e.  A  ( y R x  ->  E. z  e.  C  y R z ) ) )
supiso.4  |-  ( ph  ->  R  Or  A )
Assertion
Ref Expression
supiso  |-  ( ph  ->  sup ( ( F
" C ) ,  B ,  S )  =  ( F `  sup ( C ,  A ,  R ) ) )
Distinct variable groups:    x, y,
z, A    x, C, y, z    x, F, y, z    x, R, y, z    x, S, y, z    x, B, y, z
Allowed substitution hints:    ph( x, y, z)

Proof of Theorem supiso
Dummy variables  v  u  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 supiso.4 . . 3  |-  ( ph  ->  R  Or  A )
2 supiso.1 . . . 4  |-  ( ph  ->  F  Isom  R ,  S  ( A ,  B ) )
3 isoso 6027 . . . 4  |-  ( F 
Isom  R ,  S  ( A ,  B )  ->  ( R  Or  A 
<->  S  Or  B ) )
42, 3syl 16 . . 3  |-  ( ph  ->  ( R  Or  A  <->  S  Or  B ) )
51, 4mpbid 202 . 2  |-  ( ph  ->  S  Or  B )
6 isof1o 6004 . . . 4  |-  ( F 
Isom  R ,  S  ( A ,  B )  ->  F : A -1-1-onto-> B
)
7 f1of 5633 . . . 4  |-  ( F : A -1-1-onto-> B  ->  F : A
--> B )
82, 6, 73syl 19 . . 3  |-  ( ph  ->  F : A --> B )
9 supisoex.3 . . . 4  |-  ( ph  ->  E. x  e.  A  ( A. y  e.  C  -.  x R y  /\  A. y  e.  A  ( y R x  ->  E. z  e.  C  y R z ) ) )
101, 9supcl 7419 . . 3  |-  ( ph  ->  sup ( C ,  A ,  R )  e.  A )
118, 10ffvelrnd 5830 . 2  |-  ( ph  ->  ( F `  sup ( C ,  A ,  R ) )  e.  B )
121, 9supub 7420 . . . . . 6  |-  ( ph  ->  ( u  e.  C  ->  -.  sup ( C ,  A ,  R
) R u ) )
1312ralrimiv 2748 . . . . 5  |-  ( ph  ->  A. u  e.  C  -.  sup ( C ,  A ,  R ) R u )
141, 9suplub 7421 . . . . . . 7  |-  ( ph  ->  ( ( u  e.  A  /\  u R sup ( C ,  A ,  R )
)  ->  E. z  e.  C  u R
z ) )
1514exp3a 426 . . . . . 6  |-  ( ph  ->  ( u  e.  A  ->  ( u R sup ( C ,  A ,  R )  ->  E. z  e.  C  u R
z ) ) )
1615ralrimiv 2748 . . . . 5  |-  ( ph  ->  A. u  e.  A  ( u R sup ( C ,  A ,  R )  ->  E. z  e.  C  u R
z ) )
17 supiso.2 . . . . . . 7  |-  ( ph  ->  C  C_  A )
182, 17supisolem 7431 . . . . . 6  |-  ( (
ph  /\  sup ( C ,  A ,  R )  e.  A
)  ->  ( ( A. u  e.  C  -.  sup ( C ,  A ,  R ) R u  /\  A. u  e.  A  ( u R sup ( C ,  A ,  R )  ->  E. z  e.  C  u R z ) )  <-> 
( A. w  e.  ( F " C
)  -.  ( F `
 sup ( C ,  A ,  R
) ) S w  /\  A. w  e.  B  ( w S ( F `  sup ( C ,  A ,  R ) )  ->  E. v  e.  ( F " C ) w S v ) ) ) )
1910, 18mpdan 650 . . . . 5  |-  ( ph  ->  ( ( A. u  e.  C  -.  sup ( C ,  A ,  R ) R u  /\  A. u  e.  A  ( u R sup ( C ,  A ,  R )  ->  E. z  e.  C  u R z ) )  <-> 
( A. w  e.  ( F " C
)  -.  ( F `
 sup ( C ,  A ,  R
) ) S w  /\  A. w  e.  B  ( w S ( F `  sup ( C ,  A ,  R ) )  ->  E. v  e.  ( F " C ) w S v ) ) ) )
2013, 16, 19mpbi2and 888 . . . 4  |-  ( ph  ->  ( A. w  e.  ( F " C
)  -.  ( F `
 sup ( C ,  A ,  R
) ) S w  /\  A. w  e.  B  ( w S ( F `  sup ( C ,  A ,  R ) )  ->  E. v  e.  ( F " C ) w S v ) ) )
2120simpld 446 . . 3  |-  ( ph  ->  A. w  e.  ( F " C )  -.  ( F `  sup ( C ,  A ,  R ) ) S w )
2221r19.21bi 2764 . 2  |-  ( (
ph  /\  w  e.  ( F " C ) )  ->  -.  ( F `  sup ( C ,  A ,  R
) ) S w )
2320simprd 450 . . . 4  |-  ( ph  ->  A. w  e.  B  ( w S ( F `  sup ( C ,  A ,  R ) )  ->  E. v  e.  ( F " C ) w S v ) )
2423r19.21bi 2764 . . 3  |-  ( (
ph  /\  w  e.  B )  ->  (
w S ( F `
 sup ( C ,  A ,  R
) )  ->  E. v  e.  ( F " C
) w S v ) )
2524impr 603 . 2  |-  ( (
ph  /\  ( w  e.  B  /\  w S ( F `  sup ( C ,  A ,  R ) ) ) )  ->  E. v  e.  ( F " C
) w S v )
265, 11, 22, 25eqsupd 7418 1  |-  ( ph  ->  sup ( ( F
" C ) ,  B ,  S )  =  ( F `  sup ( C ,  A ,  R ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    /\ wa 359    = wceq 1649    e. wcel 1721   A.wral 2666   E.wrex 2667    C_ wss 3280   class class class wbr 4172    Or wor 4462   "cima 4840   -->wf 5409   -1-1-onto->wf1o 5412   ` cfv 5413    Isom wiso 5414   supcsup 7403
This theorem is referenced by:  infmsup  9942
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-ral 2671  df-rex 2672  df-reu 2673  df-rmo 2674  df-rab 2675  df-v 2918  df-sbc 3122  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-nul 3589  df-if 3700  df-sn 3780  df-pr 3781  df-op 3783  df-uni 3976  df-br 4173  df-opab 4227  df-mpt 4228  df-id 4458  df-po 4463  df-so 4464  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-isom 5422  df-riota 6508  df-sup 7404
  Copyright terms: Public domain W3C validator