MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  supiso Structured version   Unicode version

Theorem supiso 7934
Description: Image of a supremum under an isomorphism. (Contributed by Mario Carneiro, 24-Dec-2016.)
Hypotheses
Ref Expression
supiso.1  |-  ( ph  ->  F  Isom  R ,  S  ( A ,  B ) )
supiso.2  |-  ( ph  ->  C  C_  A )
supisoex.3  |-  ( ph  ->  E. x  e.  A  ( A. y  e.  C  -.  x R y  /\  A. y  e.  A  ( y R x  ->  E. z  e.  C  y R z ) ) )
supiso.4  |-  ( ph  ->  R  Or  A )
Assertion
Ref Expression
supiso  |-  ( ph  ->  sup ( ( F
" C ) ,  B ,  S )  =  ( F `  sup ( C ,  A ,  R ) ) )
Distinct variable groups:    x, y,
z, A    x, C, y, z    x, F, y, z    x, R, y, z    x, S, y, z    x, B, y, z
Allowed substitution hints:    ph( x, y, z)

Proof of Theorem supiso
Dummy variables  v  u  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 supiso.4 . . 3  |-  ( ph  ->  R  Or  A )
2 supiso.1 . . . 4  |-  ( ph  ->  F  Isom  R ,  S  ( A ,  B ) )
3 isoso 6233 . . . 4  |-  ( F 
Isom  R ,  S  ( A ,  B )  ->  ( R  Or  A 
<->  S  Or  B ) )
42, 3syl 16 . . 3  |-  ( ph  ->  ( R  Or  A  <->  S  Or  B ) )
51, 4mpbid 210 . 2  |-  ( ph  ->  S  Or  B )
6 isof1o 6210 . . . 4  |-  ( F 
Isom  R ,  S  ( A ,  B )  ->  F : A -1-1-onto-> B
)
7 f1of 5816 . . . 4  |-  ( F : A -1-1-onto-> B  ->  F : A
--> B )
82, 6, 73syl 20 . . 3  |-  ( ph  ->  F : A --> B )
9 supisoex.3 . . . 4  |-  ( ph  ->  E. x  e.  A  ( A. y  e.  C  -.  x R y  /\  A. y  e.  A  ( y R x  ->  E. z  e.  C  y R z ) ) )
101, 9supcl 7919 . . 3  |-  ( ph  ->  sup ( C ,  A ,  R )  e.  A )
118, 10ffvelrnd 6023 . 2  |-  ( ph  ->  ( F `  sup ( C ,  A ,  R ) )  e.  B )
121, 9supub 7920 . . . . . 6  |-  ( ph  ->  ( u  e.  C  ->  -.  sup ( C ,  A ,  R
) R u ) )
1312ralrimiv 2876 . . . . 5  |-  ( ph  ->  A. u  e.  C  -.  sup ( C ,  A ,  R ) R u )
141, 9suplub 7921 . . . . . . 7  |-  ( ph  ->  ( ( u  e.  A  /\  u R sup ( C ,  A ,  R )
)  ->  E. z  e.  C  u R
z ) )
1514expd 436 . . . . . 6  |-  ( ph  ->  ( u  e.  A  ->  ( u R sup ( C ,  A ,  R )  ->  E. z  e.  C  u R
z ) ) )
1615ralrimiv 2876 . . . . 5  |-  ( ph  ->  A. u  e.  A  ( u R sup ( C ,  A ,  R )  ->  E. z  e.  C  u R
z ) )
17 supiso.2 . . . . . . 7  |-  ( ph  ->  C  C_  A )
182, 17supisolem 7932 . . . . . 6  |-  ( (
ph  /\  sup ( C ,  A ,  R )  e.  A
)  ->  ( ( A. u  e.  C  -.  sup ( C ,  A ,  R ) R u  /\  A. u  e.  A  ( u R sup ( C ,  A ,  R )  ->  E. z  e.  C  u R z ) )  <-> 
( A. w  e.  ( F " C
)  -.  ( F `
 sup ( C ,  A ,  R
) ) S w  /\  A. w  e.  B  ( w S ( F `  sup ( C ,  A ,  R ) )  ->  E. v  e.  ( F " C ) w S v ) ) ) )
1910, 18mpdan 668 . . . . 5  |-  ( ph  ->  ( ( A. u  e.  C  -.  sup ( C ,  A ,  R ) R u  /\  A. u  e.  A  ( u R sup ( C ,  A ,  R )  ->  E. z  e.  C  u R z ) )  <-> 
( A. w  e.  ( F " C
)  -.  ( F `
 sup ( C ,  A ,  R
) ) S w  /\  A. w  e.  B  ( w S ( F `  sup ( C ,  A ,  R ) )  ->  E. v  e.  ( F " C ) w S v ) ) ) )
2013, 16, 19mpbi2and 919 . . . 4  |-  ( ph  ->  ( A. w  e.  ( F " C
)  -.  ( F `
 sup ( C ,  A ,  R
) ) S w  /\  A. w  e.  B  ( w S ( F `  sup ( C ,  A ,  R ) )  ->  E. v  e.  ( F " C ) w S v ) ) )
2120simpld 459 . . 3  |-  ( ph  ->  A. w  e.  ( F " C )  -.  ( F `  sup ( C ,  A ,  R ) ) S w )
2221r19.21bi 2833 . 2  |-  ( (
ph  /\  w  e.  ( F " C ) )  ->  -.  ( F `  sup ( C ,  A ,  R
) ) S w )
2320simprd 463 . . . 4  |-  ( ph  ->  A. w  e.  B  ( w S ( F `  sup ( C ,  A ,  R ) )  ->  E. v  e.  ( F " C ) w S v ) )
2423r19.21bi 2833 . . 3  |-  ( (
ph  /\  w  e.  B )  ->  (
w S ( F `
 sup ( C ,  A ,  R
) )  ->  E. v  e.  ( F " C
) w S v ) )
2524impr 619 . 2  |-  ( (
ph  /\  ( w  e.  B  /\  w S ( F `  sup ( C ,  A ,  R ) ) ) )  ->  E. v  e.  ( F " C
) w S v )
265, 11, 22, 25eqsupd 7918 1  |-  ( ph  ->  sup ( ( F
" C ) ,  B ,  S )  =  ( F `  sup ( C ,  A ,  R ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1379    e. wcel 1767   A.wral 2814   E.wrex 2815    C_ wss 3476   class class class wbr 4447    Or wor 4799   "cima 5002   -->wf 5584   -1-1-onto->wf1o 5587   ` cfv 5588    Isom wiso 5589   supcsup 7901
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2819  df-rex 2820  df-reu 2821  df-rmo 2822  df-rab 2823  df-v 3115  df-sbc 3332  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-nul 3786  df-if 3940  df-sn 4028  df-pr 4030  df-op 4034  df-uni 4246  df-br 4448  df-opab 4506  df-mpt 4507  df-id 4795  df-po 4800  df-so 4801  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5551  df-fun 5590  df-fn 5591  df-f 5592  df-f1 5593  df-fo 5594  df-f1o 5595  df-fv 5596  df-isom 5597  df-riota 6246  df-sup 7902
This theorem is referenced by:  infmsup  10522
  Copyright terms: Public domain W3C validator