HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  superpos Unicode version

Theorem superpos 22764
Description: Superposition Principle. If  A and  B are distinct atoms, there exists a third atom, distinct from  A and  B, that is the superposition of  A and  B. Definition 3.4-3(a) in [MegPav2000] p. 2345 (PDF p. 8). (Contributed by NM, 9-Jun-2006.) (New usage is discouraged.)
Assertion
Ref Expression
superpos  |-  ( ( A  e. HAtoms  /\  B  e. HAtoms  /\  A  =/=  B
)  ->  E. x  e. HAtoms  ( x  =/=  A  /\  x  =/=  B  /\  x  C_  ( A  vH  B ) ) )
Distinct variable groups:    x, A    x, B

Proof of Theorem superpos
StepHypRef Expression
1 atom1d 22763 . . 3  |-  ( A  e. HAtoms 
<->  E. y  e.  ~H  ( y  =/=  0h  /\  A  =  ( span `  { y } ) ) )
2 atom1d 22763 . . 3  |-  ( B  e. HAtoms 
<->  E. z  e.  ~H  ( z  =/=  0h  /\  B  =  ( span `  { z } ) ) )
3 reeanv 2669 . . . 4  |-  ( E. y  e.  ~H  E. z  e.  ~H  (
( y  =/=  0h  /\  A  =  ( span `  { y } ) )  /\  ( z  =/=  0h  /\  B  =  ( span `  {
z } ) ) )  <->  ( E. y  e.  ~H  ( y  =/= 
0h  /\  A  =  ( span `  { y } ) )  /\  E. z  e.  ~H  (
z  =/=  0h  /\  B  =  ( span `  { z } ) ) ) )
4 an4 800 . . . . . 6  |-  ( ( ( y  =/=  0h  /\  A  =  ( span `  { y } ) )  /\  ( z  =/=  0h  /\  B  =  ( span `  {
z } ) ) )  <->  ( ( y  =/=  0h  /\  z  =/=  0h )  /\  ( A  =  ( span `  { y } )  /\  B  =  (
span `  { z } ) ) ) )
5 neeq1 2420 . . . . . . . . . 10  |-  ( A  =  ( span `  {
y } )  -> 
( A  =/=  B  <->  (
span `  { y } )  =/=  B
) )
6 neeq2 2421 . . . . . . . . . 10  |-  ( B  =  ( span `  {
z } )  -> 
( ( span `  {
y } )  =/= 
B  <->  ( span `  {
y } )  =/=  ( span `  {
z } ) ) )
75, 6sylan9bb 683 . . . . . . . . 9  |-  ( ( A  =  ( span `  { y } )  /\  B  =  (
span `  { z } ) )  -> 
( A  =/=  B  <->  (
span `  { y } )  =/=  ( span `  { z } ) ) )
87adantl 454 . . . . . . . 8  |-  ( ( ( ( y  e. 
~H  /\  z  e.  ~H )  /\  (
y  =/=  0h  /\  z  =/=  0h ) )  /\  ( A  =  ( span `  {
y } )  /\  B  =  ( span `  { z } ) ) )  ->  ( A  =/=  B  <->  ( span `  { y } )  =/=  ( span `  {
z } ) ) )
9 hvaddcl 21422 . . . . . . . . . . . . . 14  |-  ( ( y  e.  ~H  /\  z  e.  ~H )  ->  ( y  +h  z
)  e.  ~H )
109adantr 453 . . . . . . . . . . . . 13  |-  ( ( ( y  e.  ~H  /\  z  e.  ~H )  /\  ( span `  {
y } )  =/=  ( span `  {
z } ) )  ->  ( y  +h  z )  e.  ~H )
11 hvaddeq0 21478 . . . . . . . . . . . . . . . 16  |-  ( ( y  e.  ~H  /\  z  e.  ~H )  ->  ( ( y  +h  z )  =  0h  <->  y  =  ( -u 1  .h  z ) ) )
12 sneq 3555 . . . . . . . . . . . . . . . . . . . 20  |-  ( y  =  ( -u 1  .h  z )  ->  { y }  =  { (
-u 1  .h  z
) } )
1312fveq2d 5381 . . . . . . . . . . . . . . . . . . 19  |-  ( y  =  ( -u 1  .h  z )  ->  ( span `  { y } )  =  ( span `  { ( -u 1  .h  z ) } ) )
14 neg1cn 9693 . . . . . . . . . . . . . . . . . . . 20  |-  -u 1  e.  CC
15 ax-1cn 8675 . . . . . . . . . . . . . . . . . . . . 21  |-  1  e.  CC
16 ax-1ne0 8686 . . . . . . . . . . . . . . . . . . . . 21  |-  1  =/=  0
1715, 16negne0i 9001 . . . . . . . . . . . . . . . . . . . 20  |-  -u 1  =/=  0
18 spansncol 21977 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( z  e.  ~H  /\  -u 1  e.  CC  /\  -u 1  =/=  0 )  ->  ( span `  {
( -u 1  .h  z
) } )  =  ( span `  {
z } ) )
1914, 17, 18mp3an23 1274 . . . . . . . . . . . . . . . . . . 19  |-  ( z  e.  ~H  ->  ( span `  { ( -u
1  .h  z ) } )  =  (
span `  { z } ) )
2013, 19sylan9eqr 2307 . . . . . . . . . . . . . . . . . 18  |-  ( ( z  e.  ~H  /\  y  =  ( -u 1  .h  z ) )  -> 
( span `  { y } )  =  (
span `  { z } ) )
2120ex 425 . . . . . . . . . . . . . . . . 17  |-  ( z  e.  ~H  ->  (
y  =  ( -u
1  .h  z )  ->  ( span `  {
y } )  =  ( span `  {
z } ) ) )
2221adantl 454 . . . . . . . . . . . . . . . 16  |-  ( ( y  e.  ~H  /\  z  e.  ~H )  ->  ( y  =  (
-u 1  .h  z
)  ->  ( span `  { y } )  =  ( span `  {
z } ) ) )
2311, 22sylbid 208 . . . . . . . . . . . . . . 15  |-  ( ( y  e.  ~H  /\  z  e.  ~H )  ->  ( ( y  +h  z )  =  0h  ->  ( span `  {
y } )  =  ( span `  {
z } ) ) )
2423necon3d 2450 . . . . . . . . . . . . . 14  |-  ( ( y  e.  ~H  /\  z  e.  ~H )  ->  ( ( span `  {
y } )  =/=  ( span `  {
z } )  -> 
( y  +h  z
)  =/=  0h )
)
2524imp 420 . . . . . . . . . . . . 13  |-  ( ( ( y  e.  ~H  /\  z  e.  ~H )  /\  ( span `  {
y } )  =/=  ( span `  {
z } ) )  ->  ( y  +h  z )  =/=  0h )
26 spansna 22760 . . . . . . . . . . . . 13  |-  ( ( ( y  +h  z
)  e.  ~H  /\  ( y  +h  z
)  =/=  0h )  ->  ( span `  {
( y  +h  z
) } )  e. HAtoms
)
2710, 25, 26syl2anc 645 . . . . . . . . . . . 12  |-  ( ( ( y  e.  ~H  /\  z  e.  ~H )  /\  ( span `  {
y } )  =/=  ( span `  {
z } ) )  ->  ( span `  {
( y  +h  z
) } )  e. HAtoms
)
2827adantlr 698 . . . . . . . . . . 11  |-  ( ( ( ( y  e. 
~H  /\  z  e.  ~H )  /\  (
y  =/=  0h  /\  z  =/=  0h ) )  /\  ( span `  {
y } )  =/=  ( span `  {
z } ) )  ->  ( span `  {
( y  +h  z
) } )  e. HAtoms
)
2928adantlr 698 . . . . . . . . . 10  |-  ( ( ( ( ( y  e.  ~H  /\  z  e.  ~H )  /\  (
y  =/=  0h  /\  z  =/=  0h ) )  /\  ( A  =  ( span `  {
y } )  /\  B  =  ( span `  { z } ) ) )  /\  ( span `  { y } )  =/=  ( span `  { z } ) )  ->  ( span `  { ( y  +h  z ) } )  e. HAtoms )
30 eqeq2 2262 . . . . . . . . . . . . . . . 16  |-  ( A  =  ( span `  {
y } )  -> 
( ( span `  {
( y  +h  z
) } )  =  A  <->  ( span `  {
( y  +h  z
) } )  =  ( span `  {
y } ) ) )
3130biimpd 200 . . . . . . . . . . . . . . 15  |-  ( A  =  ( span `  {
y } )  -> 
( ( span `  {
( y  +h  z
) } )  =  A  ->  ( span `  { ( y  +h  z ) } )  =  ( span `  {
y } ) ) )
32 spansneleqi 21978 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( y  +h  z )  e.  ~H  ->  (
( span `  { (
y  +h  z ) } )  =  (
span `  { y } )  ->  (
y  +h  z )  e.  ( span `  {
y } ) ) )
339, 32syl 17 . . . . . . . . . . . . . . . . . . 19  |-  ( ( y  e.  ~H  /\  z  e.  ~H )  ->  ( ( span `  {
( y  +h  z
) } )  =  ( span `  {
y } )  -> 
( y  +h  z
)  e.  ( span `  { y } ) ) )
34 elspansn 21975 . . . . . . . . . . . . . . . . . . . . 21  |-  ( y  e.  ~H  ->  (
( y  +h  z
)  e.  ( span `  { y } )  <->  E. v  e.  CC  ( y  +h  z
)  =  ( v  .h  y ) ) )
3534adantr 453 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( y  e.  ~H  /\  z  e.  ~H )  ->  ( ( y  +h  z )  e.  (
span `  { y } )  <->  E. v  e.  CC  ( y  +h  z )  =  ( v  .h  y ) ) )
36 addcl 8699 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( v  e.  CC  /\  -u 1  e.  CC )  ->  ( v  + 
-u 1 )  e.  CC )
3714, 36mpan2 655 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( v  e.  CC  ->  (
v  +  -u 1
)  e.  CC )
3837ad2antlr 710 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( y  e. 
~H  /\  z  e.  ~H )  /\  v  e.  CC )  /\  (
y  +h  z )  =  ( v  .h  y ) )  -> 
( v  +  -u
1 )  e.  CC )
39 hvmulcl 21423 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( v  e.  CC  /\  y  e.  ~H )  ->  ( v  .h  y
)  e.  ~H )
4039ancoms 441 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( y  e.  ~H  /\  v  e.  CC )  ->  ( v  .h  y
)  e.  ~H )
4140adantlr 698 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( y  e.  ~H  /\  z  e.  ~H )  /\  v  e.  CC )  ->  ( v  .h  y )  e.  ~H )
42 simpll 733 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( y  e.  ~H  /\  z  e.  ~H )  /\  v  e.  CC )  ->  y  e.  ~H )
43 simplr 734 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( y  e.  ~H  /\  z  e.  ~H )  /\  v  e.  CC )  ->  z  e.  ~H )
44 hvsubadd 21486 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( v  .h  y
)  e.  ~H  /\  y  e.  ~H  /\  z  e.  ~H )  ->  (
( ( v  .h  y )  -h  y
)  =  z  <->  ( y  +h  z )  =  ( v  .h  y ) ) )
4541, 42, 43, 44syl3anc 1187 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( y  e.  ~H  /\  z  e.  ~H )  /\  v  e.  CC )  ->  ( ( ( v  .h  y )  -h  y )  =  z  <->  ( y  +h  z )  =  ( v  .h  y ) ) )
4645biimpar 473 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( y  e. 
~H  /\  z  e.  ~H )  /\  v  e.  CC )  /\  (
y  +h  z )  =  ( v  .h  y ) )  -> 
( ( v  .h  y )  -h  y
)  =  z )
47 hvsubval 21426 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ( ( v  .h  y
)  e.  ~H  /\  y  e.  ~H )  ->  ( ( v  .h  y )  -h  y
)  =  ( ( v  .h  y )  +h  ( -u 1  .h  y ) ) )
4839, 47sylancom 651 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( v  e.  CC  /\  y  e.  ~H )  ->  ( ( v  .h  y )  -h  y
)  =  ( ( v  .h  y )  +h  ( -u 1  .h  y ) ) )
49 ax-hvdistr2 21419 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ( v  e.  CC  /\  -u 1  e.  CC  /\  y  e.  ~H )  ->  ( ( v  + 
-u 1 )  .h  y )  =  ( ( v  .h  y
)  +h  ( -u
1  .h  y ) ) )
5014, 49mp3an2 1270 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( v  e.  CC  /\  y  e.  ~H )  ->  ( ( v  + 
-u 1 )  .h  y )  =  ( ( v  .h  y
)  +h  ( -u
1  .h  y ) ) )
5148, 50eqtr4d 2288 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( v  e.  CC  /\  y  e.  ~H )  ->  ( ( v  .h  y )  -h  y
)  =  ( ( v  +  -u 1
)  .h  y ) )
5251ancoms 441 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( y  e.  ~H  /\  v  e.  CC )  ->  ( ( v  .h  y )  -h  y
)  =  ( ( v  +  -u 1
)  .h  y ) )
5352adantlr 698 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( y  e.  ~H  /\  z  e.  ~H )  /\  v  e.  CC )  ->  ( ( v  .h  y )  -h  y )  =  ( ( v  +  -u
1 )  .h  y
) )
5453adantr 453 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( y  e. 
~H  /\  z  e.  ~H )  /\  v  e.  CC )  /\  (
y  +h  z )  =  ( v  .h  y ) )  -> 
( ( v  .h  y )  -h  y
)  =  ( ( v  +  -u 1
)  .h  y ) )
5546, 54eqtr3d 2287 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( y  e. 
~H  /\  z  e.  ~H )  /\  v  e.  CC )  /\  (
y  +h  z )  =  ( v  .h  y ) )  -> 
z  =  ( ( v  +  -u 1
)  .h  y ) )
56 oveq1 5717 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( w  =  ( v  + 
-u 1 )  -> 
( w  .h  y
)  =  ( ( v  +  -u 1
)  .h  y ) )
5756eqeq2d 2264 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( w  =  ( v  + 
-u 1 )  -> 
( z  =  ( w  .h  y )  <-> 
z  =  ( ( v  +  -u 1
)  .h  y ) ) )
5857rcla4ev 2821 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( v  +  -u
1 )  e.  CC  /\  z  =  ( ( v  +  -u 1
)  .h  y ) )  ->  E. w  e.  CC  z  =  ( w  .h  y ) )
5938, 55, 58syl2anc 645 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( y  e. 
~H  /\  z  e.  ~H )  /\  v  e.  CC )  /\  (
y  +h  z )  =  ( v  .h  y ) )  ->  E. w  e.  CC  z  =  ( w  .h  y ) )
6059exp31 590 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( y  e.  ~H  /\  z  e.  ~H )  ->  ( v  e.  CC  ->  ( ( y  +h  z )  =  ( v  .h  y )  ->  E. w  e.  CC  z  =  ( w  .h  y ) ) ) )
6160rexlimdv 2628 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( y  e.  ~H  /\  z  e.  ~H )  ->  ( E. v  e.  CC  ( y  +h  z )  =  ( v  .h  y )  ->  E. w  e.  CC  z  =  ( w  .h  y ) ) )
6235, 61sylbid 208 . . . . . . . . . . . . . . . . . . 19  |-  ( ( y  e.  ~H  /\  z  e.  ~H )  ->  ( ( y  +h  z )  e.  (
span `  { y } )  ->  E. w  e.  CC  z  =  ( w  .h  y ) ) )
6333, 62syld 42 . . . . . . . . . . . . . . . . . 18  |-  ( ( y  e.  ~H  /\  z  e.  ~H )  ->  ( ( span `  {
( y  +h  z
) } )  =  ( span `  {
y } )  ->  E. w  e.  CC  z  =  ( w  .h  y ) ) )
64 elspansn 21975 . . . . . . . . . . . . . . . . . . 19  |-  ( y  e.  ~H  ->  (
z  e.  ( span `  { y } )  <->  E. w  e.  CC  z  =  ( w  .h  y ) ) )
6564adantr 453 . . . . . . . . . . . . . . . . . 18  |-  ( ( y  e.  ~H  /\  z  e.  ~H )  ->  ( z  e.  (
span `  { y } )  <->  E. w  e.  CC  z  =  ( w  .h  y ) ) )
6663, 65sylibrd 227 . . . . . . . . . . . . . . . . 17  |-  ( ( y  e.  ~H  /\  z  e.  ~H )  ->  ( ( span `  {
( y  +h  z
) } )  =  ( span `  {
y } )  -> 
z  e.  ( span `  { y } ) ) )
6766adantr 453 . . . . . . . . . . . . . . . 16  |-  ( ( ( y  e.  ~H  /\  z  e.  ~H )  /\  z  =/=  0h )  ->  ( ( span `  {
( y  +h  z
) } )  =  ( span `  {
y } )  -> 
z  e.  ( span `  { y } ) ) )
68 spansneleq 21979 . . . . . . . . . . . . . . . . . 18  |-  ( ( y  e.  ~H  /\  z  =/=  0h )  -> 
( z  e.  (
span `  { y } )  ->  ( span `  { z } )  =  ( span `  { y } ) ) )
69 eqcom 2255 . . . . . . . . . . . . . . . . . 18  |-  ( (
span `  { z } )  =  (
span `  { y } )  <->  ( span `  { y } )  =  ( span `  {
z } ) )
7068, 69syl6ib 219 . . . . . . . . . . . . . . . . 17  |-  ( ( y  e.  ~H  /\  z  =/=  0h )  -> 
( z  e.  (
span `  { y } )  ->  ( span `  { y } )  =  ( span `  { z } ) ) )
7170adantlr 698 . . . . . . . . . . . . . . . 16  |-  ( ( ( y  e.  ~H  /\  z  e.  ~H )  /\  z  =/=  0h )  ->  ( z  e.  (
span `  { y } )  ->  ( span `  { y } )  =  ( span `  { z } ) ) )
7267, 71syld 42 . . . . . . . . . . . . . . 15  |-  ( ( ( y  e.  ~H  /\  z  e.  ~H )  /\  z  =/=  0h )  ->  ( ( span `  {
( y  +h  z
) } )  =  ( span `  {
y } )  -> 
( span `  { y } )  =  (
span `  { z } ) ) )
7331, 72sylan9r 642 . . . . . . . . . . . . . 14  |-  ( ( ( ( y  e. 
~H  /\  z  e.  ~H )  /\  z  =/=  0h )  /\  A  =  ( span `  {
y } ) )  ->  ( ( span `  { ( y  +h  z ) } )  =  A  ->  ( span `  { y } )  =  ( span `  { z } ) ) )
7473necon3d 2450 . . . . . . . . . . . . 13  |-  ( ( ( ( y  e. 
~H  /\  z  e.  ~H )  /\  z  =/=  0h )  /\  A  =  ( span `  {
y } ) )  ->  ( ( span `  { y } )  =/=  ( span `  {
z } )  -> 
( span `  { (
y  +h  z ) } )  =/=  A
) )
7574adantlrl 703 . . . . . . . . . . . 12  |-  ( ( ( ( y  e. 
~H  /\  z  e.  ~H )  /\  (
y  =/=  0h  /\  z  =/=  0h ) )  /\  A  =  (
span `  { y } ) )  -> 
( ( span `  {
y } )  =/=  ( span `  {
z } )  -> 
( span `  { (
y  +h  z ) } )  =/=  A
) )
7675adantrr 700 . . . . . . . . . . 11  |-  ( ( ( ( y  e. 
~H  /\  z  e.  ~H )  /\  (
y  =/=  0h  /\  z  =/=  0h ) )  /\  ( A  =  ( span `  {
y } )  /\  B  =  ( span `  { z } ) ) )  ->  (
( span `  { y } )  =/=  ( span `  { z } )  ->  ( span `  { ( y  +h  z ) } )  =/=  A ) )
7776imp 420 . . . . . . . . . 10  |-  ( ( ( ( ( y  e.  ~H  /\  z  e.  ~H )  /\  (
y  =/=  0h  /\  z  =/=  0h ) )  /\  ( A  =  ( span `  {
y } )  /\  B  =  ( span `  { z } ) ) )  /\  ( span `  { y } )  =/=  ( span `  { z } ) )  ->  ( span `  { ( y  +h  z ) } )  =/=  A )
78 eqeq2 2262 . . . . . . . . . . . . . . . 16  |-  ( B  =  ( span `  {
z } )  -> 
( ( span `  {
( y  +h  z
) } )  =  B  <->  ( span `  {
( y  +h  z
) } )  =  ( span `  {
z } ) ) )
7978biimpd 200 . . . . . . . . . . . . . . 15  |-  ( B  =  ( span `  {
z } )  -> 
( ( span `  {
( y  +h  z
) } )  =  B  ->  ( span `  { ( y  +h  z ) } )  =  ( span `  {
z } ) ) )
80 spansneleqi 21978 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( y  +h  z )  e.  ~H  ->  (
( span `  { (
y  +h  z ) } )  =  (
span `  { z } )  ->  (
y  +h  z )  e.  ( span `  {
z } ) ) )
819, 80syl 17 . . . . . . . . . . . . . . . . . . 19  |-  ( ( y  e.  ~H  /\  z  e.  ~H )  ->  ( ( span `  {
( y  +h  z
) } )  =  ( span `  {
z } )  -> 
( y  +h  z
)  e.  ( span `  { z } ) ) )
82 elspansn 21975 . . . . . . . . . . . . . . . . . . . . 21  |-  ( z  e.  ~H  ->  (
( y  +h  z
)  e.  ( span `  { z } )  <->  E. v  e.  CC  ( y  +h  z
)  =  ( v  .h  z ) ) )
8382adantl 454 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( y  e.  ~H  /\  z  e.  ~H )  ->  ( ( y  +h  z )  e.  (
span `  { z } )  <->  E. v  e.  CC  ( y  +h  z )  =  ( v  .h  z ) ) )
8437ad2antlr 710 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( y  e. 
~H  /\  z  e.  ~H )  /\  v  e.  CC )  /\  (
y  +h  z )  =  ( v  .h  z ) )  -> 
( v  +  -u
1 )  e.  CC )
85 hvmulcl 21423 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ( v  e.  CC  /\  z  e.  ~H )  ->  ( v  .h  z
)  e.  ~H )
8685ancoms 441 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( z  e.  ~H  /\  v  e.  CC )  ->  ( v  .h  z
)  e.  ~H )
8786adantll 697 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( ( y  e.  ~H  /\  z  e.  ~H )  /\  v  e.  CC )  ->  ( v  .h  z )  e.  ~H )
88 hvsubadd 21486 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( ( v  .h  z
)  e.  ~H  /\  z  e.  ~H  /\  y  e.  ~H )  ->  (
( ( v  .h  z )  -h  z
)  =  y  <->  ( z  +h  y )  =  ( v  .h  z ) ) )
8987, 43, 42, 88syl3anc 1187 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( y  e.  ~H  /\  z  e.  ~H )  /\  v  e.  CC )  ->  ( ( ( v  .h  z )  -h  z )  =  y  <->  ( z  +h  y )  =  ( v  .h  z ) ) )
90 ax-hvcom 21411 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( y  e.  ~H  /\  z  e.  ~H )  ->  ( y  +h  z
)  =  ( z  +h  y ) )
9190adantr 453 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( ( y  e.  ~H  /\  z  e.  ~H )  /\  v  e.  CC )  ->  ( y  +h  z )  =  ( z  +h  y ) )
9291eqeq1d 2261 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( y  e.  ~H  /\  z  e.  ~H )  /\  v  e.  CC )  ->  ( ( y  +h  z )  =  ( v  .h  z
)  <->  ( z  +h  y )  =  ( v  .h  z ) ) )
9389, 92bitr4d 249 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( y  e.  ~H  /\  z  e.  ~H )  /\  v  e.  CC )  ->  ( ( ( v  .h  z )  -h  z )  =  y  <->  ( y  +h  z )  =  ( v  .h  z ) ) )
9493biimpar 473 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( y  e. 
~H  /\  z  e.  ~H )  /\  v  e.  CC )  /\  (
y  +h  z )  =  ( v  .h  z ) )  -> 
( ( v  .h  z )  -h  z
)  =  y )
95 hvsubval 21426 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ( ( v  .h  z
)  e.  ~H  /\  z  e.  ~H )  ->  ( ( v  .h  z )  -h  z
)  =  ( ( v  .h  z )  +h  ( -u 1  .h  z ) ) )
9685, 95sylancom 651 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( v  e.  CC  /\  z  e.  ~H )  ->  ( ( v  .h  z )  -h  z
)  =  ( ( v  .h  z )  +h  ( -u 1  .h  z ) ) )
97 ax-hvdistr2 21419 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ( v  e.  CC  /\  -u 1  e.  CC  /\  z  e.  ~H )  ->  ( ( v  + 
-u 1 )  .h  z )  =  ( ( v  .h  z
)  +h  ( -u
1  .h  z ) ) )
9814, 97mp3an2 1270 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( v  e.  CC  /\  z  e.  ~H )  ->  ( ( v  + 
-u 1 )  .h  z )  =  ( ( v  .h  z
)  +h  ( -u
1  .h  z ) ) )
9996, 98eqtr4d 2288 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( v  e.  CC  /\  z  e.  ~H )  ->  ( ( v  .h  z )  -h  z
)  =  ( ( v  +  -u 1
)  .h  z ) )
10099ancoms 441 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( z  e.  ~H  /\  v  e.  CC )  ->  ( ( v  .h  z )  -h  z
)  =  ( ( v  +  -u 1
)  .h  z ) )
101100adantll 697 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( y  e.  ~H  /\  z  e.  ~H )  /\  v  e.  CC )  ->  ( ( v  .h  z )  -h  z )  =  ( ( v  +  -u
1 )  .h  z
) )
102101adantr 453 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( y  e. 
~H  /\  z  e.  ~H )  /\  v  e.  CC )  /\  (
y  +h  z )  =  ( v  .h  z ) )  -> 
( ( v  .h  z )  -h  z
)  =  ( ( v  +  -u 1
)  .h  z ) )
10394, 102eqtr3d 2287 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( y  e. 
~H  /\  z  e.  ~H )  /\  v  e.  CC )  /\  (
y  +h  z )  =  ( v  .h  z ) )  -> 
y  =  ( ( v  +  -u 1
)  .h  z ) )
104 oveq1 5717 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( w  =  ( v  + 
-u 1 )  -> 
( w  .h  z
)  =  ( ( v  +  -u 1
)  .h  z ) )
105104eqeq2d 2264 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( w  =  ( v  + 
-u 1 )  -> 
( y  =  ( w  .h  z )  <-> 
y  =  ( ( v  +  -u 1
)  .h  z ) ) )
106105rcla4ev 2821 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( v  +  -u
1 )  e.  CC  /\  y  =  ( ( v  +  -u 1
)  .h  z ) )  ->  E. w  e.  CC  y  =  ( w  .h  z ) )
10784, 103, 106syl2anc 645 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( y  e. 
~H  /\  z  e.  ~H )  /\  v  e.  CC )  /\  (
y  +h  z )  =  ( v  .h  z ) )  ->  E. w  e.  CC  y  =  ( w  .h  z ) )
108107exp31 590 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( y  e.  ~H  /\  z  e.  ~H )  ->  ( v  e.  CC  ->  ( ( y  +h  z )  =  ( v  .h  z )  ->  E. w  e.  CC  y  =  ( w  .h  z ) ) ) )
109108rexlimdv 2628 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( y  e.  ~H  /\  z  e.  ~H )  ->  ( E. v  e.  CC  ( y  +h  z )  =  ( v  .h  z )  ->  E. w  e.  CC  y  =  ( w  .h  z ) ) )
11083, 109sylbid 208 . . . . . . . . . . . . . . . . . . 19  |-  ( ( y  e.  ~H  /\  z  e.  ~H )  ->  ( ( y  +h  z )  e.  (
span `  { z } )  ->  E. w  e.  CC  y  =  ( w  .h  z ) ) )
11181, 110syld 42 . . . . . . . . . . . . . . . . . 18  |-  ( ( y  e.  ~H  /\  z  e.  ~H )  ->  ( ( span `  {
( y  +h  z
) } )  =  ( span `  {
z } )  ->  E. w  e.  CC  y  =  ( w  .h  z ) ) )
112 elspansn 21975 . . . . . . . . . . . . . . . . . . 19  |-  ( z  e.  ~H  ->  (
y  e.  ( span `  { z } )  <->  E. w  e.  CC  y  =  ( w  .h  z ) ) )
113112adantl 454 . . . . . . . . . . . . . . . . . 18  |-  ( ( y  e.  ~H  /\  z  e.  ~H )  ->  ( y  e.  (
span `  { z } )  <->  E. w  e.  CC  y  =  ( w  .h  z ) ) )
114111, 113sylibrd 227 . . . . . . . . . . . . . . . . 17  |-  ( ( y  e.  ~H  /\  z  e.  ~H )  ->  ( ( span `  {
( y  +h  z
) } )  =  ( span `  {
z } )  -> 
y  e.  ( span `  { z } ) ) )
115114adantr 453 . . . . . . . . . . . . . . . 16  |-  ( ( ( y  e.  ~H  /\  z  e.  ~H )  /\  y  =/=  0h )  ->  ( ( span `  {
( y  +h  z
) } )  =  ( span `  {
z } )  -> 
y  e.  ( span `  { z } ) ) )
116 spansneleq 21979 . . . . . . . . . . . . . . . . 17  |-  ( ( z  e.  ~H  /\  y  =/=  0h )  -> 
( y  e.  (
span `  { z } )  ->  ( span `  { y } )  =  ( span `  { z } ) ) )
117116adantll 697 . . . . . . . . . . . . . . . 16  |-  ( ( ( y  e.  ~H  /\  z  e.  ~H )  /\  y  =/=  0h )  ->  ( y  e.  (
span `  { z } )  ->  ( span `  { y } )  =  ( span `  { z } ) ) )
118115, 117syld 42 . . . . . . . . . . . . . . 15  |-  ( ( ( y  e.  ~H  /\  z  e.  ~H )  /\  y  =/=  0h )  ->  ( ( span `  {
( y  +h  z
) } )  =  ( span `  {
z } )  -> 
( span `  { y } )  =  (
span `  { z } ) ) )
11979, 118sylan9r 642 . . . . . . . . . . . . . 14  |-  ( ( ( ( y  e. 
~H  /\  z  e.  ~H )  /\  y  =/=  0h )  /\  B  =  ( span `  {
z } ) )  ->  ( ( span `  { ( y  +h  z ) } )  =  B  ->  ( span `  { y } )  =  ( span `  { z } ) ) )
120119necon3d 2450 . . . . . . . . . . . . 13  |-  ( ( ( ( y  e. 
~H  /\  z  e.  ~H )  /\  y  =/=  0h )  /\  B  =  ( span `  {
z } ) )  ->  ( ( span `  { y } )  =/=  ( span `  {
z } )  -> 
( span `  { (
y  +h  z ) } )  =/=  B
) )
121120adantlrr 704 . . . . . . . . . . . 12  |-  ( ( ( ( y  e. 
~H  /\  z  e.  ~H )  /\  (
y  =/=  0h  /\  z  =/=  0h ) )  /\  B  =  (
span `  { z } ) )  -> 
( ( span `  {
y } )  =/=  ( span `  {
z } )  -> 
( span `  { (
y  +h  z ) } )  =/=  B
) )
122121adantrl 699 . . . . . . . . . . 11  |-  ( ( ( ( y  e. 
~H  /\  z  e.  ~H )  /\  (
y  =/=  0h  /\  z  =/=  0h ) )  /\  ( A  =  ( span `  {
y } )  /\  B  =  ( span `  { z } ) ) )  ->  (
( span `  { y } )  =/=  ( span `  { z } )  ->  ( span `  { ( y  +h  z ) } )  =/=  B ) )
123122imp 420 . . . . . . . . . 10  |-  ( ( ( ( ( y  e.  ~H  /\  z  e.  ~H )  /\  (
y  =/=  0h  /\  z  =/=  0h ) )  /\  ( A  =  ( span `  {
y } )  /\  B  =  ( span `  { z } ) ) )  /\  ( span `  { y } )  =/=  ( span `  { z } ) )  ->  ( span `  { ( y  +h  z ) } )  =/=  B )
124 spanpr 21989 . . . . . . . . . . . . . 14  |-  ( ( y  e.  ~H  /\  z  e.  ~H )  ->  ( span `  {
( y  +h  z
) } )  C_  ( span `  { y ,  z } ) )
125124adantr 453 . . . . . . . . . . . . 13  |-  ( ( ( y  e.  ~H  /\  z  e.  ~H )  /\  ( A  =  (
span `  { y } )  /\  B  =  ( span `  {
z } ) ) )  ->  ( span `  { ( y  +h  z ) } ) 
C_  ( span `  {
y ,  z } ) )
126 oveq12 5719 . . . . . . . . . . . . . 14  |-  ( ( A  =  ( span `  { y } )  /\  B  =  (
span `  { z } ) )  -> 
( A  vH  B
)  =  ( (
span `  { y } )  vH  ( span `  { z } ) ) )
127 df-pr 3551 . . . . . . . . . . . . . . . . 17  |-  { y ,  z }  =  ( { y }  u.  { z } )
128127fveq2i 5380 . . . . . . . . . . . . . . . 16  |-  ( span `  { y ,  z } )  =  (
span `  ( {
y }  u.  {
z } ) )
129 snssi 3659 . . . . . . . . . . . . . . . . 17  |-  ( y  e.  ~H  ->  { y }  C_  ~H )
130 snssi 3659 . . . . . . . . . . . . . . . . 17  |-  ( z  e.  ~H  ->  { z }  C_  ~H )
131 spanun 21954 . . . . . . . . . . . . . . . . 17  |-  ( ( { y }  C_  ~H  /\  { z } 
C_  ~H )  ->  ( span `  ( { y }  u.  { z } ) )  =  ( ( span `  {
y } )  +H  ( span `  {
z } ) ) )
132129, 130, 131syl2an 465 . . . . . . . . . . . . . . . 16  |-  ( ( y  e.  ~H  /\  z  e.  ~H )  ->  ( span `  ( { y }  u.  { z } ) )  =  ( ( span `  { y } )  +H  ( span `  {
z } ) ) )
133128, 132syl5eq 2297 . . . . . . . . . . . . . . 15  |-  ( ( y  e.  ~H  /\  z  e.  ~H )  ->  ( span `  {
y ,  z } )  =  ( (
span `  { y } )  +H  ( span `  { z } ) ) )
134 spansnch 21969 . . . . . . . . . . . . . . . 16  |-  ( y  e.  ~H  ->  ( span `  { y } )  e.  CH )
135 spansnj 22074 . . . . . . . . . . . . . . . 16  |-  ( ( ( span `  {
y } )  e. 
CH  /\  z  e.  ~H )  ->  ( (
span `  { y } )  +H  ( span `  { z } ) )  =  ( ( span `  {
y } )  vH  ( span `  { z } ) ) )
136134, 135sylan 459 . . . . . . . . . . . . . . 15  |-  ( ( y  e.  ~H  /\  z  e.  ~H )  ->  ( ( span `  {
y } )  +H  ( span `  {
z } ) )  =  ( ( span `  { y } )  vH  ( span `  {
z } ) ) )
137133, 136eqtr2d 2286 . . . . . . . . . . . . . 14  |-  ( ( y  e.  ~H  /\  z  e.  ~H )  ->  ( ( span `  {
y } )  vH  ( span `  { z } ) )  =  ( span `  {
y ,  z } ) )
138126, 137sylan9eqr 2307 . . . . . . . . . . . . 13  |-  ( ( ( y  e.  ~H  /\  z  e.  ~H )  /\  ( A  =  (
span `  { y } )  /\  B  =  ( span `  {
z } ) ) )  ->  ( A  vH  B )  =  (
span `  { y ,  z } ) )
139125, 138sseqtr4d 3136 . . . . . . . . . . . 12  |-  ( ( ( y  e.  ~H  /\  z  e.  ~H )  /\  ( A  =  (
span `  { y } )  /\  B  =  ( span `  {
z } ) ) )  ->  ( span `  { ( y  +h  z ) } ) 
C_  ( A  vH  B ) )
140139adantlr 698 . . . . . . . . . . 11  |-  ( ( ( ( y  e. 
~H  /\  z  e.  ~H )  /\  (
y  =/=  0h  /\  z  =/=  0h ) )  /\  ( A  =  ( span `  {
y } )  /\  B  =  ( span `  { z } ) ) )  ->  ( span `  { ( y  +h  z ) } )  C_  ( A  vH  B ) )
141140adantr 453 . . . . . . . . . 10  |-  ( ( ( ( ( y  e.  ~H  /\  z  e.  ~H )  /\  (
y  =/=  0h  /\  z  =/=  0h ) )  /\  ( A  =  ( span `  {
y } )  /\  B  =  ( span `  { z } ) ) )  /\  ( span `  { y } )  =/=  ( span `  { z } ) )  ->  ( span `  { ( y  +h  z ) } ) 
C_  ( A  vH  B ) )
142 neeq1 2420 . . . . . . . . . . . 12  |-  ( x  =  ( span `  {
( y  +h  z
) } )  -> 
( x  =/=  A  <->  (
span `  { (
y  +h  z ) } )  =/=  A
) )
143 neeq1 2420 . . . . . . . . . . . 12  |-  ( x  =  ( span `  {
( y  +h  z
) } )  -> 
( x  =/=  B  <->  (
span `  { (
y  +h  z ) } )  =/=  B
) )
144 sseq1 3120 . . . . . . . . . . . 12  |-  ( x  =  ( span `  {
( y  +h  z
) } )  -> 
( x  C_  ( A  vH  B )  <->  ( span `  { ( y  +h  z ) } ) 
C_  ( A  vH  B ) ) )
145142, 143, 1443anbi123d 1257 . . . . . . . . . . 11  |-  ( x  =  ( span `  {
( y  +h  z
) } )  -> 
( ( x  =/= 
A  /\  x  =/=  B  /\  x  C_  ( A  vH  B ) )  <-> 
( ( span `  {
( y  +h  z
) } )  =/= 
A  /\  ( span `  { ( y  +h  z ) } )  =/=  B  /\  ( span `  { ( y  +h  z ) } )  C_  ( A  vH  B ) ) ) )
146145rcla4ev 2821 . . . . . . . . . 10  |-  ( ( ( span `  {
( y  +h  z
) } )  e. HAtoms  /\  ( ( span `  {
( y  +h  z
) } )  =/= 
A  /\  ( span `  { ( y  +h  z ) } )  =/=  B  /\  ( span `  { ( y  +h  z ) } )  C_  ( A  vH  B ) ) )  ->  E. x  e. HAtoms  (
x  =/=  A  /\  x  =/=  B  /\  x  C_  ( A  vH  B
) ) )
14729, 77, 123, 141, 146syl13anc 1189 . . . . . . . . 9  |-  ( ( ( ( ( y  e.  ~H  /\  z  e.  ~H )  /\  (
y  =/=  0h  /\  z  =/=  0h ) )  /\  ( A  =  ( span `  {
y } )  /\  B  =  ( span `  { z } ) ) )  /\  ( span `  { y } )  =/=  ( span `  { z } ) )  ->  E. x  e. HAtoms  ( x  =/=  A  /\  x  =/=  B  /\  x  C_  ( A  vH  B ) ) )
148147ex 425 . . . . . . . 8  |-  ( ( ( ( y  e. 
~H  /\  z  e.  ~H )  /\  (
y  =/=  0h  /\  z  =/=  0h ) )  /\  ( A  =  ( span `  {
y } )  /\  B  =  ( span `  { z } ) ) )  ->  (
( span `  { y } )  =/=  ( span `  { z } )  ->  E. x  e. HAtoms  ( x  =/=  A  /\  x  =/=  B  /\  x  C_  ( A  vH  B ) ) ) )
1498, 148sylbid 208 . . . . . . 7  |-  ( ( ( ( y  e. 
~H  /\  z  e.  ~H )  /\  (
y  =/=  0h  /\  z  =/=  0h ) )  /\  ( A  =  ( span `  {
y } )  /\  B  =  ( span `  { z } ) ) )  ->  ( A  =/=  B  ->  E. x  e. HAtoms  ( x  =/=  A  /\  x  =/=  B  /\  x  C_  ( A  vH  B ) ) ) )
150149expl 604 . . . . . 6  |-  ( ( y  e.  ~H  /\  z  e.  ~H )  ->  ( ( ( y  =/=  0h  /\  z  =/=  0h )  /\  ( A  =  ( span `  { y } )  /\  B  =  (
span `  { z } ) ) )  ->  ( A  =/= 
B  ->  E. x  e. HAtoms  ( x  =/=  A  /\  x  =/=  B  /\  x  C_  ( A  vH  B ) ) ) ) )
1514, 150syl5bi 210 . . . . 5  |-  ( ( y  e.  ~H  /\  z  e.  ~H )  ->  ( ( ( y  =/=  0h  /\  A  =  ( span `  {
y } ) )  /\  ( z  =/= 
0h  /\  B  =  ( span `  { z } ) ) )  ->  ( A  =/= 
B  ->  E. x  e. HAtoms  ( x  =/=  A  /\  x  =/=  B  /\  x  C_  ( A  vH  B ) ) ) ) )
152151rexlimivv 2634 . . . 4  |-  ( E. y  e.  ~H  E. z  e.  ~H  (
( y  =/=  0h  /\  A  =  ( span `  { y } ) )  /\  ( z  =/=  0h  /\  B  =  ( span `  {
z } ) ) )  ->  ( A  =/=  B  ->  E. x  e. HAtoms  ( x  =/=  A  /\  x  =/=  B  /\  x  C_  ( A  vH  B ) ) ) )
1533, 152sylbir 206 . . 3  |-  ( ( E. y  e.  ~H  ( y  =/=  0h  /\  A  =  ( span `  { y } ) )  /\  E. z  e.  ~H  ( z  =/= 
0h  /\  B  =  ( span `  { z } ) ) )  ->  ( A  =/= 
B  ->  E. x  e. HAtoms  ( x  =/=  A  /\  x  =/=  B  /\  x  C_  ( A  vH  B ) ) ) )
1541, 2, 153syl2anb 467 . 2  |-  ( ( A  e. HAtoms  /\  B  e. HAtoms
)  ->  ( A  =/=  B  ->  E. x  e. HAtoms  ( x  =/=  A  /\  x  =/=  B  /\  x  C_  ( A  vH  B ) ) ) )
1551543impia 1153 1  |-  ( ( A  e. HAtoms  /\  B  e. HAtoms  /\  A  =/=  B
)  ->  E. x  e. HAtoms  ( x  =/=  A  /\  x  =/=  B  /\  x  C_  ( A  vH  B ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 6    <-> wb 178    /\ wa 360    /\ w3a 939    = wceq 1619    e. wcel 1621    =/= wne 2412   E.wrex 2510    u. cun 3076    C_ wss 3078   {csn 3544   {cpr 3545   ` cfv 4592  (class class class)co 5710   CCcc 8615   0cc0 8617   1c1 8618    + caddc 8620   -ucneg 8918   ~Hchil 21329    +h cva 21330    .h csm 21331   0hc0v 21334    -h cmv 21335   CHcch 21339    +H cph 21341   spancspn 21342    vH chj 21343  HAtomscat 21375
This theorem is referenced by:  chirredi  22804
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1926  ax-ext 2234  ax-rep 4028  ax-sep 4038  ax-nul 4046  ax-pow 4082  ax-pr 4108  ax-un 4403  ax-inf2 7226  ax-cc 7945  ax-cnex 8673  ax-resscn 8674  ax-1cn 8675  ax-icn 8676  ax-addcl 8677  ax-addrcl 8678  ax-mulcl 8679  ax-mulrcl 8680  ax-mulcom 8681  ax-addass 8682  ax-mulass 8683  ax-distr 8684  ax-i2m1 8685  ax-1ne0 8686  ax-1rid 8687  ax-rnegex 8688  ax-rrecex 8689  ax-cnre 8690  ax-pre-lttri 8691  ax-pre-lttrn 8692  ax-pre-ltadd 8693  ax-pre-mulgt0 8694  ax-pre-sup 8695  ax-addf 8696  ax-mulf 8697  ax-hilex 21409  ax-hfvadd 21410  ax-hvcom 21411  ax-hvass 21412  ax-hv0cl 21413  ax-hvaddid 21414  ax-hfvmul 21415  ax-hvmulid 21416  ax-hvmulass 21417  ax-hvdistr1 21418  ax-hvdistr2 21419  ax-hvmul0 21420  ax-hfi 21488  ax-his1 21491  ax-his2 21492  ax-his3 21493  ax-his4 21494  ax-hcompl 21611
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1883  df-eu 2118  df-mo 2119  df-clab 2240  df-cleq 2246  df-clel 2249  df-nfc 2374  df-ne 2414  df-nel 2415  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2516  df-v 2729  df-sbc 2922  df-csb 3010  df-dif 3081  df-un 3083  df-in 3085  df-ss 3089  df-pss 3091  df-nul 3363  df-if 3471  df-pw 3532  df-sn 3550  df-pr 3551  df-tp 3552  df-op 3553  df-uni 3728  df-int 3761  df-iun 3805  df-iin 3806  df-br 3921  df-opab 3975  df-mpt 3976  df-tr 4011  df-eprel 4198  df-id 4202  df-po 4207  df-so 4208  df-fr 4245  df-se 4246  df-we 4247  df-ord 4288  df-on 4289  df-lim 4290  df-suc 4291  df-om 4548  df-xp 4594  df-rel 4595  df-cnv 4596  df-co 4597  df-dm 4598  df-rn 4599  df-res 4600  df-ima 4601  df-fun 4602  df-fn 4603  df-f 4604  df-f1 4605  df-fo 4606  df-f1o 4607  df-fv 4608  df-isom 4609  df-ov 5713  df-oprab 5714  df-mpt2 5715  df-of 5930  df-1st 5974  df-2nd 5975  df-iota 6143  df-riota 6190  df-recs 6274  df-rdg 6309  df-1o 6365  df-2o 6366  df-oadd 6369  df-omul 6370  df-er 6546  df-map 6660  df-pm 6661  df-ixp 6704  df-en 6750  df-dom 6751  df-sdom 6752  df-fin 6753  df-fi 7049  df-sup 7078  df-oi 7109  df-card 7456  df-acn 7459  df-cda 7678  df-pnf 8749  df-mnf 8750  df-xr 8751  df-ltxr 8752  df-le 8753  df-sub 8919  df-neg 8920  df-div 9304  df-n 9627  df-2 9684  df-3 9685  df-4 9686  df-5 9687  df-6 9688  df-7 9689  df-8 9690  df-9 9691  df-10 9692  df-n0 9845  df-z 9904  df-dec 10004  df-uz 10110  df-q 10196  df-rp 10234  df-xneg 10331  df-xadd 10332  df-xmul 10333  df-ioo 10538  df-ico 10540  df-icc 10541  df-fz 10661  df-fzo 10749  df-fl 10803  df-seq 10925  df-exp 10983  df-hash 11216  df-cj 11461  df-re 11462  df-im 11463  df-sqr 11597  df-abs 11598  df-clim 11839  df-rlim 11840  df-sum 12036  df-struct 13024  df-ndx 13025  df-slot 13026  df-base 13027  df-sets 13028  df-ress 13029  df-plusg 13095  df-mulr 13096  df-starv 13097  df-sca 13098  df-vsca 13099  df-tset 13101  df-ple 13102  df-ds 13104  df-hom 13106  df-cco 13107  df-rest 13201  df-topn 13202  df-topgen 13218  df-pt 13219  df-prds 13222  df-xrs 13277  df-0g 13278  df-gsum 13279  df-qtop 13284  df-imas 13285  df-xps 13287  df-mre 13361  df-mrc 13362  df-acs 13363  df-mnd 14202  df-submnd 14251  df-mulg 14327  df-cntz 14628  df-cmn 14926  df-xmet 16205  df-met 16206  df-bl 16207  df-mopn 16208  df-cnfld 16210  df-top 16468  df-bases 16470  df-topon 16471  df-topsp 16472  df-cld 16588  df-ntr 16589  df-cls 16590  df-nei 16667  df-cn 16789  df-cnp 16790  df-lm 16791  df-haus 16875  df-tx 17089  df-hmeo 17278  df-fbas 17352  df-fg 17353  df-fil 17373  df-fm 17465  df-flim 17466  df-flf 17467  df-xms 17717  df-ms 17718  df-tms 17719  df-cfil 18513  df-cau 18514  df-cmet 18515  df-grpo 20688  df-gid 20689  df-ginv 20690  df-gdiv 20691  df-ablo 20779  df-subgo 20799  df-vc 20932  df-nv 20978  df-va 20981  df-ba 20982  df-sm 20983  df-0v 20984  df-vs 20985  df-nmcv 20986  df-ims 20987  df-dip 21104  df-ssp 21128  df-ph 21221  df-cbn 21272  df-hnorm 21378  df-hba 21379  df-hvsub 21381  df-hlim 21382  df-hcau 21383  df-sh 21616  df-ch 21631  df-oc 21661  df-ch0 21662  df-shs 21717  df-span 21718  df-chj 21719  df-pjh 21804  df-cv 22689  df-at 22748
  Copyright terms: Public domain W3C validator