Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  supeq3 Structured version   Unicode version

Theorem supeq3 7926
 Description: Equality theorem for supremum. (Contributed by Scott Fenton, 13-Jun-2018.)
Assertion
Ref Expression
supeq3

Proof of Theorem supeq3
Dummy variables are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq 4458 . . . . . . 7
21notbid 294 . . . . . 6
32ralbidv 2896 . . . . 5
4 breq 4458 . . . . . . 7
5 breq 4458 . . . . . . . 8
65rexbidv 2968 . . . . . . 7
74, 6imbi12d 320 . . . . . 6
87ralbidv 2896 . . . . 5
93, 8anbi12d 710 . . . 4
109rabbidv 3101 . . 3
1110unieqd 4261 . 2
12 df-sup 7919 . 2
13 df-sup 7919 . 2
1411, 12, 133eqtr4g 2523 1
 Colors of variables: wff setvar class Syntax hints:   wn 3   wi 4   wa 369   wceq 1395  wral 2807  wrex 2808  crab 2811  cuni 4251   class class class wbr 4456  csup 7918 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1619  ax-4 1632  ax-5 1705  ax-6 1748  ax-7 1791  ax-10 1838  ax-11 1843  ax-12 1855  ax-13 2000  ax-ext 2435 This theorem depends on definitions:  df-bi 185  df-an 371  df-tru 1398  df-ex 1614  df-nf 1618  df-sb 1741  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ral 2812  df-rex 2813  df-rab 2816  df-uni 4252  df-br 4457  df-sup 7919 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator