MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  supeq1 Structured version   Unicode version

Theorem supeq1 7691
Description: Equality theorem for supremum. (Contributed by NM, 22-May-1999.)
Assertion
Ref Expression
supeq1  |-  ( B  =  C  ->  sup ( B ,  A ,  R )  =  sup ( C ,  A ,  R ) )

Proof of Theorem supeq1
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 raleq 2915 . . . . 5  |-  ( B  =  C  ->  ( A. y  e.  B  -.  x R y  <->  A. y  e.  C  -.  x R y ) )
2 rexeq 2916 . . . . . . 7  |-  ( B  =  C  ->  ( E. z  e.  B  y R z  <->  E. z  e.  C  y R
z ) )
32imbi2d 316 . . . . . 6  |-  ( B  =  C  ->  (
( y R x  ->  E. z  e.  B  y R z )  <->  ( y R x  ->  E. z  e.  C  y R
z ) ) )
43ralbidv 2733 . . . . 5  |-  ( B  =  C  ->  ( A. y  e.  A  ( y R x  ->  E. z  e.  B  y R z )  <->  A. y  e.  A  ( y R x  ->  E. z  e.  C  y R
z ) ) )
51, 4anbi12d 705 . . . 4  |-  ( B  =  C  ->  (
( A. y  e.  B  -.  x R y  /\  A. y  e.  A  ( y R x  ->  E. z  e.  B  y R
z ) )  <->  ( A. y  e.  C  -.  x R y  /\  A. y  e.  A  (
y R x  ->  E. z  e.  C  y R z ) ) ) )
65rabbidv 2962 . . 3  |-  ( B  =  C  ->  { x  e.  A  |  ( A. y  e.  B  -.  x R y  /\  A. y  e.  A  ( y R x  ->  E. z  e.  B  y R z ) ) }  =  { x  e.  A  |  ( A. y  e.  C  -.  x R y  /\  A. y  e.  A  ( y R x  ->  E. z  e.  C  y R z ) ) } )
76unieqd 4098 . 2  |-  ( B  =  C  ->  U. {
x  e.  A  | 
( A. y  e.  B  -.  x R y  /\  A. y  e.  A  ( y R x  ->  E. z  e.  B  y R
z ) ) }  =  U. { x  e.  A  |  ( A. y  e.  C  -.  x R y  /\  A. y  e.  A  ( y R x  ->  E. z  e.  C  y R z ) ) } )
8 df-sup 7687 . 2  |-  sup ( B ,  A ,  R )  =  U. { x  e.  A  |  ( A. y  e.  B  -.  x R y  /\  A. y  e.  A  (
y R x  ->  E. z  e.  B  y R z ) ) }
9 df-sup 7687 . 2  |-  sup ( C ,  A ,  R )  =  U. { x  e.  A  |  ( A. y  e.  C  -.  x R y  /\  A. y  e.  A  (
y R x  ->  E. z  e.  C  y R z ) ) }
107, 8, 93eqtr4g 2498 1  |-  ( B  =  C  ->  sup ( B ,  A ,  R )  =  sup ( C ,  A ,  R ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 369    = wceq 1364   A.wral 2713   E.wrex 2714   {crab 2717   U.cuni 4088   class class class wbr 4289   supcsup 7686
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1713  ax-7 1733  ax-10 1780  ax-11 1785  ax-12 1797  ax-13 1948  ax-ext 2422
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-tru 1367  df-ex 1592  df-nf 1595  df-sb 1706  df-clab 2428  df-cleq 2434  df-clel 2437  df-nfc 2566  df-ral 2718  df-rex 2719  df-rab 2722  df-uni 4089  df-sup 7687
This theorem is referenced by:  supeq1d  7692  supeq1i  7693  ramcl2lem  14066  odval  16030  submod  16061  bndth  20489  ioorval  21013  uniioombllem6  21027  mdegcl  21499
  Copyright terms: Public domain W3C validator