Users' Mathboxes Mathbox for Brendan Leahy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  supaddc Unicode version

Theorem supaddc 26137
Description: The supremum function distributes over addition in a sense similar to that in supmul1 9929. (Contributed by Brendan Leahy, 25-Sep-2017.)
Hypotheses
Ref Expression
supadd.a1  |-  ( ph  ->  A  C_  RR )
supadd.a2  |-  ( ph  ->  A  =/=  (/) )
supadd.a3  |-  ( ph  ->  E. x  e.  RR  A. y  e.  A  y  <_  x )
supaddc.b  |-  ( ph  ->  B  e.  RR )
supaddc.c  |-  C  =  { z  |  E. v  e.  A  z  =  ( v  +  B ) }
Assertion
Ref Expression
supaddc  |-  ( ph  ->  ( sup ( A ,  RR ,  <  )  +  B )  =  sup ( C ,  RR ,  <  ) )
Distinct variable groups:    x, y,
z, v, A    x, B, y, z, v    x, C    ph, z, v
Allowed substitution hints:    ph( x, y)    C( y, z, v)

Proof of Theorem supaddc
Dummy variables  w  a are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 2919 . . . . . . 7  |-  w  e. 
_V
2 oveq1 6047 . . . . . . . . . 10  |-  ( v  =  a  ->  (
v  +  B )  =  ( a  +  B ) )
32eqeq2d 2415 . . . . . . . . 9  |-  ( v  =  a  ->  (
z  =  ( v  +  B )  <->  z  =  ( a  +  B
) ) )
43cbvrexv 2893 . . . . . . . 8  |-  ( E. v  e.  A  z  =  ( v  +  B )  <->  E. a  e.  A  z  =  ( a  +  B
) )
5 eqeq1 2410 . . . . . . . . 9  |-  ( z  =  w  ->  (
z  =  ( a  +  B )  <->  w  =  ( a  +  B
) ) )
65rexbidv 2687 . . . . . . . 8  |-  ( z  =  w  ->  ( E. a  e.  A  z  =  ( a  +  B )  <->  E. a  e.  A  w  =  ( a  +  B
) ) )
74, 6syl5bb 249 . . . . . . 7  |-  ( z  =  w  ->  ( E. v  e.  A  z  =  ( v  +  B )  <->  E. a  e.  A  w  =  ( a  +  B
) ) )
8 supaddc.c . . . . . . 7  |-  C  =  { z  |  E. v  e.  A  z  =  ( v  +  B ) }
91, 7, 8elab2 3045 . . . . . 6  |-  ( w  e.  C  <->  E. a  e.  A  w  =  ( a  +  B
) )
10 supadd.a1 . . . . . . . . . 10  |-  ( ph  ->  A  C_  RR )
1110sselda 3308 . . . . . . . . 9  |-  ( (
ph  /\  a  e.  A )  ->  a  e.  RR )
12 supadd.a2 . . . . . . . . . . 11  |-  ( ph  ->  A  =/=  (/) )
13 supadd.a3 . . . . . . . . . . 11  |-  ( ph  ->  E. x  e.  RR  A. y  e.  A  y  <_  x )
14 suprcl 9924 . . . . . . . . . . 11  |-  ( ( A  C_  RR  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  y  <_  x
)  ->  sup ( A ,  RR ,  <  )  e.  RR )
1510, 12, 13, 14syl3anc 1184 . . . . . . . . . 10  |-  ( ph  ->  sup ( A ,  RR ,  <  )  e.  RR )
1615adantr 452 . . . . . . . . 9  |-  ( (
ph  /\  a  e.  A )  ->  sup ( A ,  RR ,  <  )  e.  RR )
17 supaddc.b . . . . . . . . . 10  |-  ( ph  ->  B  e.  RR )
1817adantr 452 . . . . . . . . 9  |-  ( (
ph  /\  a  e.  A )  ->  B  e.  RR )
1910, 12, 133jca 1134 . . . . . . . . . 10  |-  ( ph  ->  ( A  C_  RR  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  y  <_  x ) )
20 suprub 9925 . . . . . . . . . 10  |-  ( ( ( A  C_  RR  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  y  <_  x )  /\  a  e.  A )  ->  a  <_  sup ( A ,  RR ,  <  ) )
2119, 20sylan 458 . . . . . . . . 9  |-  ( (
ph  /\  a  e.  A )  ->  a  <_  sup ( A ,  RR ,  <  ) )
2211, 16, 18, 21leadd1dd 9596 . . . . . . . 8  |-  ( (
ph  /\  a  e.  A )  ->  (
a  +  B )  <_  ( sup ( A ,  RR ,  <  )  +  B ) )
23 breq1 4175 . . . . . . . 8  |-  ( w  =  ( a  +  B )  ->  (
w  <_  ( sup ( A ,  RR ,  <  )  +  B )  <-> 
( a  +  B
)  <_  ( sup ( A ,  RR ,  <  )  +  B ) ) )
2422, 23syl5ibrcom 214 . . . . . . 7  |-  ( (
ph  /\  a  e.  A )  ->  (
w  =  ( a  +  B )  ->  w  <_  ( sup ( A ,  RR ,  <  )  +  B ) ) )
2524rexlimdva 2790 . . . . . 6  |-  ( ph  ->  ( E. a  e.  A  w  =  ( a  +  B )  ->  w  <_  ( sup ( A ,  RR ,  <  )  +  B
) ) )
269, 25syl5bi 209 . . . . 5  |-  ( ph  ->  ( w  e.  C  ->  w  <_  ( sup ( A ,  RR ,  <  )  +  B ) ) )
2726ralrimiv 2748 . . . 4  |-  ( ph  ->  A. w  e.  C  w  <_  ( sup ( A ,  RR ,  <  )  +  B ) )
2811, 18readdcld 9071 . . . . . . . . 9  |-  ( (
ph  /\  a  e.  A )  ->  (
a  +  B )  e.  RR )
29 eleq1a 2473 . . . . . . . . 9  |-  ( ( a  +  B )  e.  RR  ->  (
w  =  ( a  +  B )  ->  w  e.  RR )
)
3028, 29syl 16 . . . . . . . 8  |-  ( (
ph  /\  a  e.  A )  ->  (
w  =  ( a  +  B )  ->  w  e.  RR )
)
3130rexlimdva 2790 . . . . . . 7  |-  ( ph  ->  ( E. a  e.  A  w  =  ( a  +  B )  ->  w  e.  RR ) )
329, 31syl5bi 209 . . . . . 6  |-  ( ph  ->  ( w  e.  C  ->  w  e.  RR ) )
3332ssrdv 3314 . . . . 5  |-  ( ph  ->  C  C_  RR )
34 ovex 6065 . . . . . . . . 9  |-  ( a  +  B )  e. 
_V
3534isseti 2922 . . . . . . . 8  |-  E. w  w  =  ( a  +  B )
3635rgenw 2733 . . . . . . 7  |-  A. a  e.  A  E. w  w  =  ( a  +  B )
37 r19.2z 3677 . . . . . . 7  |-  ( ( A  =/=  (/)  /\  A. a  e.  A  E. w  w  =  (
a  +  B ) )  ->  E. a  e.  A  E. w  w  =  ( a  +  B ) )
3812, 36, 37sylancl 644 . . . . . 6  |-  ( ph  ->  E. a  e.  A  E. w  w  =  ( a  +  B
) )
399exbii 1589 . . . . . . 7  |-  ( E. w  w  e.  C  <->  E. w E. a  e.  A  w  =  ( a  +  B ) )
40 n0 3597 . . . . . . 7  |-  ( C  =/=  (/)  <->  E. w  w  e.  C )
41 rexcom4 2935 . . . . . . 7  |-  ( E. a  e.  A  E. w  w  =  (
a  +  B )  <->  E. w E. a  e.  A  w  =  ( a  +  B ) )
4239, 40, 413bitr4i 269 . . . . . 6  |-  ( C  =/=  (/)  <->  E. a  e.  A  E. w  w  =  ( a  +  B
) )
4338, 42sylibr 204 . . . . 5  |-  ( ph  ->  C  =/=  (/) )
4415, 17readdcld 9071 . . . . . 6  |-  ( ph  ->  ( sup ( A ,  RR ,  <  )  +  B )  e.  RR )
45 breq2 4176 . . . . . . . 8  |-  ( x  =  ( sup ( A ,  RR ,  <  )  +  B )  ->  ( w  <_  x 
<->  w  <_  ( sup ( A ,  RR ,  <  )  +  B ) ) )
4645ralbidv 2686 . . . . . . 7  |-  ( x  =  ( sup ( A ,  RR ,  <  )  +  B )  ->  ( A. w  e.  C  w  <_  x  <->  A. w  e.  C  w  <_  ( sup ( A ,  RR ,  <  )  +  B ) ) )
4746rspcev 3012 . . . . . 6  |-  ( ( ( sup ( A ,  RR ,  <  )  +  B )  e.  RR  /\  A. w  e.  C  w  <_  ( sup ( A ,  RR ,  <  )  +  B ) )  ->  E. x  e.  RR  A. w  e.  C  w  <_  x )
4844, 27, 47syl2anc 643 . . . . 5  |-  ( ph  ->  E. x  e.  RR  A. w  e.  C  w  <_  x )
49 suprleub 9928 . . . . 5  |-  ( ( ( C  C_  RR  /\  C  =/=  (/)  /\  E. x  e.  RR  A. w  e.  C  w  <_  x )  /\  ( sup ( A ,  RR ,  <  )  +  B
)  e.  RR )  ->  ( sup ( C ,  RR ,  <  )  <_  ( sup ( A ,  RR ,  <  )  +  B )  <->  A. w  e.  C  w  <_  ( sup ( A ,  RR ,  <  )  +  B ) ) )
5033, 43, 48, 44, 49syl31anc 1187 . . . 4  |-  ( ph  ->  ( sup ( C ,  RR ,  <  )  <_  ( sup ( A ,  RR ,  <  )  +  B )  <->  A. w  e.  C  w  <_  ( sup ( A ,  RR ,  <  )  +  B ) ) )
5127, 50mpbird 224 . . 3  |-  ( ph  ->  sup ( C ,  RR ,  <  )  <_ 
( sup ( A ,  RR ,  <  )  +  B ) )
52 suprcl 9924 . . . . . . . 8  |-  ( ( C  C_  RR  /\  C  =/=  (/)  /\  E. x  e.  RR  A. w  e.  C  w  <_  x
)  ->  sup ( C ,  RR ,  <  )  e.  RR )
5333, 43, 48, 52syl3anc 1184 . . . . . . 7  |-  ( ph  ->  sup ( C ,  RR ,  <  )  e.  RR )
5453, 17, 15ltsubaddd 9578 . . . . . 6  |-  ( ph  ->  ( ( sup ( C ,  RR ,  <  )  -  B )  <  sup ( A ,  RR ,  <  )  <->  sup ( C ,  RR ,  <  )  <  ( sup ( A ,  RR ,  <  )  +  B
) ) )
5554biimpar 472 . . . . 5  |-  ( (
ph  /\  sup ( C ,  RR ,  <  )  <  ( sup ( A ,  RR ,  <  )  +  B
) )  ->  ( sup ( C ,  RR ,  <  )  -  B
)  <  sup ( A ,  RR ,  <  ) )
5653, 17resubcld 9421 . . . . . . 7  |-  ( ph  ->  ( sup ( C ,  RR ,  <  )  -  B )  e.  RR )
57 suprlub 9926 . . . . . . 7  |-  ( ( ( A  C_  RR  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  y  <_  x )  /\  ( sup ( C ,  RR ,  <  )  -  B
)  e.  RR )  ->  ( ( sup ( C ,  RR ,  <  )  -  B
)  <  sup ( A ,  RR ,  <  )  <->  E. a  e.  A  ( sup ( C ,  RR ,  <  )  -  B )  <  a
) )
5810, 12, 13, 56, 57syl31anc 1187 . . . . . 6  |-  ( ph  ->  ( ( sup ( C ,  RR ,  <  )  -  B )  <  sup ( A ,  RR ,  <  )  <->  E. a  e.  A  ( sup ( C ,  RR ,  <  )  -  B )  <  a ) )
5958adantr 452 . . . . 5  |-  ( (
ph  /\  sup ( C ,  RR ,  <  )  <  ( sup ( A ,  RR ,  <  )  +  B
) )  ->  (
( sup ( C ,  RR ,  <  )  -  B )  <  sup ( A ,  RR ,  <  )  <->  E. a  e.  A  ( sup ( C ,  RR ,  <  )  -  B )  <  a ) )
6055, 59mpbid 202 . . . 4  |-  ( (
ph  /\  sup ( C ,  RR ,  <  )  <  ( sup ( A ,  RR ,  <  )  +  B
) )  ->  E. a  e.  A  ( sup ( C ,  RR ,  <  )  -  B )  <  a )
61 rspe 2727 . . . . . . . . . . . . . 14  |-  ( ( a  e.  A  /\  w  =  ( a  +  B ) )  ->  E. a  e.  A  w  =  ( a  +  B ) )
6261, 9sylibr 204 . . . . . . . . . . . . 13  |-  ( ( a  e.  A  /\  w  =  ( a  +  B ) )  ->  w  e.  C )
6362adantl 453 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( a  e.  A  /\  w  =  ( a  +  B ) ) )  ->  w  e.  C
)
64 simplrr 738 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
a  e.  A  /\  w  =  ( a  +  B ) ) )  /\  w  e.  C
)  ->  w  =  ( a  +  B
) )
6533, 43, 483jca 1134 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( C  C_  RR  /\  C  =/=  (/)  /\  E. x  e.  RR  A. w  e.  C  w  <_  x ) )
66 suprub 9925 . . . . . . . . . . . . . . 15  |-  ( ( ( C  C_  RR  /\  C  =/=  (/)  /\  E. x  e.  RR  A. w  e.  C  w  <_  x )  /\  w  e.  C )  ->  w  <_  sup ( C ,  RR ,  <  ) )
6765, 66sylan 458 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  w  e.  C )  ->  w  <_  sup ( C ,  RR ,  <  ) )
6867adantlr 696 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
a  e.  A  /\  w  =  ( a  +  B ) ) )  /\  w  e.  C
)  ->  w  <_  sup ( C ,  RR ,  <  ) )
6964, 68eqbrtrrd 4194 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
a  e.  A  /\  w  =  ( a  +  B ) ) )  /\  w  e.  C
)  ->  ( a  +  B )  <_  sup ( C ,  RR ,  <  ) )
7063, 69mpdan 650 . . . . . . . . . . 11  |-  ( (
ph  /\  ( a  e.  A  /\  w  =  ( a  +  B ) ) )  ->  ( a  +  B )  <_  sup ( C ,  RR ,  <  ) )
7170expr 599 . . . . . . . . . 10  |-  ( (
ph  /\  a  e.  A )  ->  (
w  =  ( a  +  B )  -> 
( a  +  B
)  <_  sup ( C ,  RR ,  <  ) ) )
7271exlimdv 1643 . . . . . . . . 9  |-  ( (
ph  /\  a  e.  A )  ->  ( E. w  w  =  ( a  +  B
)  ->  ( a  +  B )  <_  sup ( C ,  RR ,  <  ) ) )
7335, 72mpi 17 . . . . . . . 8  |-  ( (
ph  /\  a  e.  A )  ->  (
a  +  B )  <_  sup ( C ,  RR ,  <  ) )
7473adantlr 696 . . . . . . 7  |-  ( ( ( ph  /\  sup ( C ,  RR ,  <  )  <  ( sup ( A ,  RR ,  <  )  +  B
) )  /\  a  e.  A )  ->  (
a  +  B )  <_  sup ( C ,  RR ,  <  ) )
7528adantlr 696 . . . . . . . 8  |-  ( ( ( ph  /\  sup ( C ,  RR ,  <  )  <  ( sup ( A ,  RR ,  <  )  +  B
) )  /\  a  e.  A )  ->  (
a  +  B )  e.  RR )
7653ad2antrr 707 . . . . . . . 8  |-  ( ( ( ph  /\  sup ( C ,  RR ,  <  )  <  ( sup ( A ,  RR ,  <  )  +  B
) )  /\  a  e.  A )  ->  sup ( C ,  RR ,  <  )  e.  RR )
7775, 76lenltd 9175 . . . . . . 7  |-  ( ( ( ph  /\  sup ( C ,  RR ,  <  )  <  ( sup ( A ,  RR ,  <  )  +  B
) )  /\  a  e.  A )  ->  (
( a  +  B
)  <_  sup ( C ,  RR ,  <  )  <->  -.  sup ( C ,  RR ,  <  )  <  ( a  +  B ) ) )
7874, 77mpbid 202 . . . . . 6  |-  ( ( ( ph  /\  sup ( C ,  RR ,  <  )  <  ( sup ( A ,  RR ,  <  )  +  B
) )  /\  a  e.  A )  ->  -.  sup ( C ,  RR ,  <  )  <  (
a  +  B ) )
7917ad2antrr 707 . . . . . . 7  |-  ( ( ( ph  /\  sup ( C ,  RR ,  <  )  <  ( sup ( A ,  RR ,  <  )  +  B
) )  /\  a  e.  A )  ->  B  e.  RR )
8011adantlr 696 . . . . . . 7  |-  ( ( ( ph  /\  sup ( C ,  RR ,  <  )  <  ( sup ( A ,  RR ,  <  )  +  B
) )  /\  a  e.  A )  ->  a  e.  RR )
8176, 79, 80ltsubaddd 9578 . . . . . 6  |-  ( ( ( ph  /\  sup ( C ,  RR ,  <  )  <  ( sup ( A ,  RR ,  <  )  +  B
) )  /\  a  e.  A )  ->  (
( sup ( C ,  RR ,  <  )  -  B )  < 
a  <->  sup ( C ,  RR ,  <  )  < 
( a  +  B
) ) )
8278, 81mtbird 293 . . . . 5  |-  ( ( ( ph  /\  sup ( C ,  RR ,  <  )  <  ( sup ( A ,  RR ,  <  )  +  B
) )  /\  a  e.  A )  ->  -.  ( sup ( C ,  RR ,  <  )  -  B )  <  a
)
8382nrexdv 2769 . . . 4  |-  ( (
ph  /\  sup ( C ,  RR ,  <  )  <  ( sup ( A ,  RR ,  <  )  +  B
) )  ->  -.  E. a  e.  A  ( sup ( C ,  RR ,  <  )  -  B )  <  a
)
8460, 83pm2.65da 560 . . 3  |-  ( ph  ->  -.  sup ( C ,  RR ,  <  )  <  ( sup ( A ,  RR ,  <  )  +  B ) )
8553, 44eqleltd 9173 . . 3  |-  ( ph  ->  ( sup ( C ,  RR ,  <  )  =  ( sup ( A ,  RR ,  <  )  +  B )  <-> 
( sup ( C ,  RR ,  <  )  <_  ( sup ( A ,  RR ,  <  )  +  B )  /\  -.  sup ( C ,  RR ,  <  )  <  ( sup ( A ,  RR ,  <  )  +  B
) ) ) )
8651, 84, 85mpbir2and 889 . 2  |-  ( ph  ->  sup ( C ,  RR ,  <  )  =  ( sup ( A ,  RR ,  <  )  +  B ) )
8786eqcomd 2409 1  |-  ( ph  ->  ( sup ( A ,  RR ,  <  )  +  B )  =  sup ( C ,  RR ,  <  ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936   E.wex 1547    = wceq 1649    e. wcel 1721   {cab 2390    =/= wne 2567   A.wral 2666   E.wrex 2667    C_ wss 3280   (/)c0 3588   class class class wbr 4172  (class class class)co 6040   supcsup 7403   RRcr 8945    + caddc 8949    < clt 9076    <_ cle 9077    - cmin 9247
This theorem is referenced by:  supadd  26138
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660  ax-resscn 9003  ax-1cn 9004  ax-icn 9005  ax-addcl 9006  ax-addrcl 9007  ax-mulcl 9008  ax-mulrcl 9009  ax-mulcom 9010  ax-addass 9011  ax-mulass 9012  ax-distr 9013  ax-i2m1 9014  ax-1ne0 9015  ax-1rid 9016  ax-rnegex 9017  ax-rrecex 9018  ax-cnre 9019  ax-pre-lttri 9020  ax-pre-lttrn 9021  ax-pre-ltadd 9022  ax-pre-mulgt0 9023  ax-pre-sup 9024
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-nel 2570  df-ral 2671  df-rex 2672  df-reu 2673  df-rmo 2674  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-op 3783  df-uni 3976  df-br 4173  df-opab 4227  df-mpt 4228  df-id 4458  df-po 4463  df-so 4464  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-riota 6508  df-er 6864  df-en 7069  df-dom 7070  df-sdom 7071  df-sup 7404  df-pnf 9078  df-mnf 9079  df-xr 9080  df-ltxr 9081  df-le 9082  df-sub 9249  df-neg 9250
  Copyright terms: Public domain W3C validator