MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sup2 Structured version   Unicode version

Theorem sup2 10400
Description: A nonempty, bounded-above set of reals has a supremum. Stronger version of completeness axiom (it has a slightly weaker antecedent). (Contributed by NM, 19-Jan-1997.)
Assertion
Ref Expression
sup2  |-  ( ( A  C_  RR  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  ( y  < 
x  \/  y  =  x ) )  ->  E. x  e.  RR  ( A. y  e.  A  -.  x  <  y  /\  A. y  e.  RR  (
y  <  x  ->  E. z  e.  A  y  <  z ) ) )
Distinct variable group:    x, y, z, A

Proof of Theorem sup2
StepHypRef Expression
1 peano2re 9656 . . . . . . . . . . . 12  |-  ( x  e.  RR  ->  (
x  +  1 )  e.  RR )
21adantr 465 . . . . . . . . . . 11  |-  ( ( x  e.  RR  /\  A. y  e.  A  ( y  <  x  \/  y  =  x ) )  ->  ( x  +  1 )  e.  RR )
32a1i 11 . . . . . . . . . 10  |-  ( A 
C_  RR  ->  ( ( x  e.  RR  /\  A. y  e.  A  ( y  <  x  \/  y  =  x ) )  ->  ( x  +  1 )  e.  RR ) )
4 ssel 3461 . . . . . . . . . . . . . . . 16  |-  ( A 
C_  RR  ->  ( y  e.  A  ->  y  e.  RR ) )
5 ltp1 10281 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( x  e.  RR  ->  x  <  ( x  +  1 ) )
61ancli 551 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( x  e.  RR  ->  (
x  e.  RR  /\  ( x  +  1
)  e.  RR ) )
7 lttr 9565 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( y  e.  RR  /\  x  e.  RR  /\  (
x  +  1 )  e.  RR )  -> 
( ( y  < 
x  /\  x  <  ( x  +  1 ) )  ->  y  <  ( x  +  1 ) ) )
873expb 1189 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( y  e.  RR  /\  ( x  e.  RR  /\  ( x  +  1 )  e.  RR ) )  ->  ( (
y  <  x  /\  x  <  ( x  + 
1 ) )  -> 
y  <  ( x  +  1 ) ) )
96, 8sylan2 474 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( y  e.  RR  /\  x  e.  RR )  ->  ( ( y  < 
x  /\  x  <  ( x  +  1 ) )  ->  y  <  ( x  +  1 ) ) )
105, 9sylan2i 655 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( y  e.  RR  /\  x  e.  RR )  ->  ( ( y  < 
x  /\  x  e.  RR )  ->  y  < 
( x  +  1 ) ) )
1110exp4b 607 . . . . . . . . . . . . . . . . . . . . 21  |-  ( y  e.  RR  ->  (
x  e.  RR  ->  ( y  <  x  -> 
( x  e.  RR  ->  y  <  ( x  +  1 ) ) ) ) )
1211com34 83 . . . . . . . . . . . . . . . . . . . 20  |-  ( y  e.  RR  ->  (
x  e.  RR  ->  ( x  e.  RR  ->  ( y  <  x  -> 
y  <  ( x  +  1 ) ) ) ) )
1312pm2.43d 48 . . . . . . . . . . . . . . . . . . 19  |-  ( y  e.  RR  ->  (
x  e.  RR  ->  ( y  <  x  -> 
y  <  ( x  +  1 ) ) ) )
1413imp 429 . . . . . . . . . . . . . . . . . 18  |-  ( ( y  e.  RR  /\  x  e.  RR )  ->  ( y  <  x  ->  y  <  ( x  +  1 ) ) )
15 breq1 4406 . . . . . . . . . . . . . . . . . . . 20  |-  ( y  =  x  ->  (
y  <  ( x  +  1 )  <->  x  <  ( x  +  1 ) ) )
165, 15syl5ibrcom 222 . . . . . . . . . . . . . . . . . . 19  |-  ( x  e.  RR  ->  (
y  =  x  -> 
y  <  ( x  +  1 ) ) )
1716adantl 466 . . . . . . . . . . . . . . . . . 18  |-  ( ( y  e.  RR  /\  x  e.  RR )  ->  ( y  =  x  ->  y  <  (
x  +  1 ) ) )
1814, 17jaod 380 . . . . . . . . . . . . . . . . 17  |-  ( ( y  e.  RR  /\  x  e.  RR )  ->  ( ( y  < 
x  \/  y  =  x )  ->  y  <  ( x  +  1 ) ) )
1918ex 434 . . . . . . . . . . . . . . . 16  |-  ( y  e.  RR  ->  (
x  e.  RR  ->  ( ( y  <  x  \/  y  =  x
)  ->  y  <  ( x  +  1 ) ) ) )
204, 19syl6 33 . . . . . . . . . . . . . . 15  |-  ( A 
C_  RR  ->  ( y  e.  A  ->  (
x  e.  RR  ->  ( ( y  <  x  \/  y  =  x
)  ->  y  <  ( x  +  1 ) ) ) ) )
2120com23 78 . . . . . . . . . . . . . 14  |-  ( A 
C_  RR  ->  ( x  e.  RR  ->  (
y  e.  A  -> 
( ( y  < 
x  \/  y  =  x )  ->  y  <  ( x  +  1 ) ) ) ) )
2221imp 429 . . . . . . . . . . . . 13  |-  ( ( A  C_  RR  /\  x  e.  RR )  ->  (
y  e.  A  -> 
( ( y  < 
x  \/  y  =  x )  ->  y  <  ( x  +  1 ) ) ) )
2322a2d 26 . . . . . . . . . . . 12  |-  ( ( A  C_  RR  /\  x  e.  RR )  ->  (
( y  e.  A  ->  ( y  <  x  \/  y  =  x
) )  ->  (
y  e.  A  -> 
y  <  ( x  +  1 ) ) ) )
2423ralimdv2 2905 . . . . . . . . . . 11  |-  ( ( A  C_  RR  /\  x  e.  RR )  ->  ( A. y  e.  A  ( y  <  x  \/  y  =  x
)  ->  A. y  e.  A  y  <  ( x  +  1 ) ) )
2524expimpd 603 . . . . . . . . . 10  |-  ( A 
C_  RR  ->  ( ( x  e.  RR  /\  A. y  e.  A  ( y  <  x  \/  y  =  x ) )  ->  A. y  e.  A  y  <  ( x  +  1 ) ) )
263, 25jcad 533 . . . . . . . . 9  |-  ( A 
C_  RR  ->  ( ( x  e.  RR  /\  A. y  e.  A  ( y  <  x  \/  y  =  x ) )  ->  ( (
x  +  1 )  e.  RR  /\  A. y  e.  A  y  <  ( x  +  1 ) ) ) )
27 ovex 6228 . . . . . . . . . 10  |-  ( x  +  1 )  e. 
_V
28 eleq1 2526 . . . . . . . . . . 11  |-  ( z  =  ( x  + 
1 )  ->  (
z  e.  RR  <->  ( x  +  1 )  e.  RR ) )
29 breq2 4407 . . . . . . . . . . . 12  |-  ( z  =  ( x  + 
1 )  ->  (
y  <  z  <->  y  <  ( x  +  1 ) ) )
3029ralbidv 2846 . . . . . . . . . . 11  |-  ( z  =  ( x  + 
1 )  ->  ( A. y  e.  A  y  <  z  <->  A. y  e.  A  y  <  ( x  +  1 ) ) )
3128, 30anbi12d 710 . . . . . . . . . 10  |-  ( z  =  ( x  + 
1 )  ->  (
( z  e.  RR  /\ 
A. y  e.  A  y  <  z )  <->  ( (
x  +  1 )  e.  RR  /\  A. y  e.  A  y  <  ( x  +  1 ) ) ) )
3227, 31spcev 3170 . . . . . . . . 9  |-  ( ( ( x  +  1 )  e.  RR  /\  A. y  e.  A  y  <  ( x  + 
1 ) )  ->  E. z ( z  e.  RR  /\  A. y  e.  A  y  <  z ) )
3326, 32syl6 33 . . . . . . . 8  |-  ( A 
C_  RR  ->  ( ( x  e.  RR  /\  A. y  e.  A  ( y  <  x  \/  y  =  x ) )  ->  E. z
( z  e.  RR  /\ 
A. y  e.  A  y  <  z ) ) )
3433exlimdv 1691 . . . . . . 7  |-  ( A 
C_  RR  ->  ( E. x ( x  e.  RR  /\  A. y  e.  A  ( y  <  x  \/  y  =  x ) )  ->  E. z ( z  e.  RR  /\  A. y  e.  A  y  <  z ) ) )
35 eleq1 2526 . . . . . . . . 9  |-  ( z  =  x  ->  (
z  e.  RR  <->  x  e.  RR ) )
36 breq2 4407 . . . . . . . . . 10  |-  ( z  =  x  ->  (
y  <  z  <->  y  <  x ) )
3736ralbidv 2846 . . . . . . . . 9  |-  ( z  =  x  ->  ( A. y  e.  A  y  <  z  <->  A. y  e.  A  y  <  x ) )
3835, 37anbi12d 710 . . . . . . . 8  |-  ( z  =  x  ->  (
( z  e.  RR  /\ 
A. y  e.  A  y  <  z )  <->  ( x  e.  RR  /\  A. y  e.  A  y  <  x ) ) )
3938cbvexv 1984 . . . . . . 7  |-  ( E. z ( z  e.  RR  /\  A. y  e.  A  y  <  z )  <->  E. x ( x  e.  RR  /\  A. y  e.  A  y  <  x ) )
4034, 39syl6ib 226 . . . . . 6  |-  ( A 
C_  RR  ->  ( E. x ( x  e.  RR  /\  A. y  e.  A  ( y  <  x  \/  y  =  x ) )  ->  E. x ( x  e.  RR  /\  A. y  e.  A  y  <  x ) ) )
41 df-rex 2805 . . . . . 6  |-  ( E. x  e.  RR  A. y  e.  A  (
y  <  x  \/  y  =  x )  <->  E. x ( x  e.  RR  /\  A. y  e.  A  ( y  <  x  \/  y  =  x ) ) )
42 df-rex 2805 . . . . . 6  |-  ( E. x  e.  RR  A. y  e.  A  y  <  x  <->  E. x ( x  e.  RR  /\  A. y  e.  A  y  <  x ) )
4340, 41, 423imtr4g 270 . . . . 5  |-  ( A 
C_  RR  ->  ( E. x  e.  RR  A. y  e.  A  (
y  <  x  \/  y  =  x )  ->  E. x  e.  RR  A. y  e.  A  y  <  x ) )
4443adantr 465 . . . 4  |-  ( ( A  C_  RR  /\  A  =/=  (/) )  ->  ( E. x  e.  RR  A. y  e.  A  ( y  <  x  \/  y  =  x )  ->  E. x  e.  RR  A. y  e.  A  y  <  x ) )
4544imdistani 690 . . 3  |-  ( ( ( A  C_  RR  /\  A  =/=  (/) )  /\  E. x  e.  RR  A. y  e.  A  (
y  <  x  \/  y  =  x )
)  ->  ( ( A  C_  RR  /\  A  =/=  (/) )  /\  E. x  e.  RR  A. y  e.  A  y  <  x ) )
46 df-3an 967 . . 3  |-  ( ( A  C_  RR  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  ( y  < 
x  \/  y  =  x ) )  <->  ( ( A  C_  RR  /\  A  =/=  (/) )  /\  E. x  e.  RR  A. y  e.  A  ( y  <  x  \/  y  =  x ) ) )
47 df-3an 967 . . 3  |-  ( ( A  C_  RR  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  y  <  x
)  <->  ( ( A 
C_  RR  /\  A  =/=  (/) )  /\  E. x  e.  RR  A. y  e.  A  y  <  x
) )
4845, 46, 473imtr4i 266 . 2  |-  ( ( A  C_  RR  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  ( y  < 
x  \/  y  =  x ) )  -> 
( A  C_  RR  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  y  <  x ) )
49 axsup 9564 . 2  |-  ( ( A  C_  RR  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  y  <  x
)  ->  E. x  e.  RR  ( A. y  e.  A  -.  x  <  y  /\  A. y  e.  RR  ( y  < 
x  ->  E. z  e.  A  y  <  z ) ) )
5048, 49syl 16 1  |-  ( ( A  C_  RR  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  ( y  < 
x  \/  y  =  x ) )  ->  E. x  e.  RR  ( A. y  e.  A  -.  x  <  y  /\  A. y  e.  RR  (
y  <  x  ->  E. z  e.  A  y  <  z ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    \/ wo 368    /\ wa 369    /\ w3a 965    = wceq 1370   E.wex 1587    e. wcel 1758    =/= wne 2648   A.wral 2799   E.wrex 2800    C_ wss 3439   (/)c0 3748   class class class wbr 4403  (class class class)co 6203   RRcr 9395   1c1 9397    + caddc 9399    < clt 9532
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1955  ax-ext 2432  ax-sep 4524  ax-nul 4532  ax-pow 4581  ax-pr 4642  ax-un 6485  ax-resscn 9453  ax-1cn 9454  ax-icn 9455  ax-addcl 9456  ax-addrcl 9457  ax-mulcl 9458  ax-mulrcl 9459  ax-mulcom 9460  ax-addass 9461  ax-mulass 9462  ax-distr 9463  ax-i2m1 9464  ax-1ne0 9465  ax-1rid 9466  ax-rnegex 9467  ax-rrecex 9468  ax-cnre 9469  ax-pre-lttri 9470  ax-pre-lttrn 9471  ax-pre-ltadd 9472  ax-pre-mulgt0 9473  ax-pre-sup 9474
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2266  df-mo 2267  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2650  df-nel 2651  df-ral 2804  df-rex 2805  df-reu 2806  df-rab 2808  df-v 3080  df-sbc 3295  df-csb 3399  df-dif 3442  df-un 3444  df-in 3446  df-ss 3453  df-nul 3749  df-if 3903  df-pw 3973  df-sn 3989  df-pr 3991  df-op 3995  df-uni 4203  df-br 4404  df-opab 4462  df-mpt 4463  df-id 4747  df-po 4752  df-so 4753  df-xp 4957  df-rel 4958  df-cnv 4959  df-co 4960  df-dm 4961  df-rn 4962  df-res 4963  df-ima 4964  df-iota 5492  df-fun 5531  df-fn 5532  df-f 5533  df-f1 5534  df-fo 5535  df-f1o 5536  df-fv 5537  df-riota 6164  df-ov 6206  df-oprab 6207  df-mpt2 6208  df-er 7214  df-en 7424  df-dom 7425  df-sdom 7426  df-pnf 9534  df-mnf 9535  df-xr 9536  df-ltxr 9537  df-le 9538  df-sub 9711  df-neg 9712
This theorem is referenced by:  sup3  10401  nnunb  10689
  Copyright terms: Public domain W3C validator