MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sumss Structured version   Unicode version

Theorem sumss 13222
Description: Change the index set to a subset in an upper integer sum. (Contributed by Mario Carneiro, 21-Apr-2014.)
Hypotheses
Ref Expression
sumss.1  |-  ( ph  ->  A  C_  B )
sumss.2  |-  ( (
ph  /\  k  e.  A )  ->  C  e.  CC )
sumss.3  |-  ( (
ph  /\  k  e.  ( B  \  A ) )  ->  C  = 
0 )
sumss.4  |-  ( ph  ->  B  C_  ( ZZ>= `  M ) )
Assertion
Ref Expression
sumss  |-  ( ph  -> 
sum_ k  e.  A  C  =  sum_ k  e.  B  C )
Distinct variable groups:    A, k    B, k    ph, k    k, M
Allowed substitution hint:    C( k)

Proof of Theorem sumss
Dummy variable  m is distinct from all other variables.
StepHypRef Expression
1 eqid 2443 . . . . 5  |-  ( ZZ>= `  M )  =  (
ZZ>= `  M )
2 simpr 461 . . . . 5  |-  ( (
ph  /\  M  e.  ZZ )  ->  M  e.  ZZ )
3 sumss.1 . . . . . . 7  |-  ( ph  ->  A  C_  B )
4 sumss.4 . . . . . . 7  |-  ( ph  ->  B  C_  ( ZZ>= `  M ) )
53, 4sstrd 3387 . . . . . 6  |-  ( ph  ->  A  C_  ( ZZ>= `  M ) )
65adantr 465 . . . . 5  |-  ( (
ph  /\  M  e.  ZZ )  ->  A  C_  ( ZZ>= `  M )
)
7 nfcv 2589 . . . . . . 7  |-  F/_ k
m
8 nffvmpt1 5720 . . . . . . . 8  |-  F/_ k
( ( k  e.  ( ZZ>= `  M )  |->  if ( k  e.  A ,  C , 
0 ) ) `  m )
9 nfv 1673 . . . . . . . . 9  |-  F/ k  m  e.  A
10 nffvmpt1 5720 . . . . . . . . 9  |-  F/_ k
( ( k  e.  A  |->  C ) `  m )
11 nfcv 2589 . . . . . . . . 9  |-  F/_ k
0
129, 10, 11nfif 3839 . . . . . . . 8  |-  F/_ k if ( m  e.  A ,  ( ( k  e.  A  |->  C ) `
 m ) ,  0 )
138, 12nfeq 2599 . . . . . . 7  |-  F/ k ( ( k  e.  ( ZZ>= `  M )  |->  if ( k  e.  A ,  C , 
0 ) ) `  m )  =  if ( m  e.  A ,  ( ( k  e.  A  |->  C ) `
 m ) ,  0 )
14 fveq2 5712 . . . . . . . 8  |-  ( k  =  m  ->  (
( k  e.  (
ZZ>= `  M )  |->  if ( k  e.  A ,  C ,  0 ) ) `  k )  =  ( ( k  e.  ( ZZ>= `  M
)  |->  if ( k  e.  A ,  C ,  0 ) ) `
 m ) )
15 eleq1 2503 . . . . . . . . 9  |-  ( k  =  m  ->  (
k  e.  A  <->  m  e.  A ) )
16 fveq2 5712 . . . . . . . . 9  |-  ( k  =  m  ->  (
( k  e.  A  |->  C ) `  k
)  =  ( ( k  e.  A  |->  C ) `  m ) )
1715, 16ifbieq1d 3833 . . . . . . . 8  |-  ( k  =  m  ->  if ( k  e.  A ,  ( ( k  e.  A  |->  C ) `
 k ) ,  0 )  =  if ( m  e.  A ,  ( ( k  e.  A  |->  C ) `
 m ) ,  0 ) )
1814, 17eqeq12d 2457 . . . . . . 7  |-  ( k  =  m  ->  (
( ( k  e.  ( ZZ>= `  M )  |->  if ( k  e.  A ,  C , 
0 ) ) `  k )  =  if ( k  e.  A ,  ( ( k  e.  A  |->  C ) `
 k ) ,  0 )  <->  ( (
k  e.  ( ZZ>= `  M )  |->  if ( k  e.  A ,  C ,  0 ) ) `  m )  =  if ( m  e.  A ,  ( ( k  e.  A  |->  C ) `  m
) ,  0 ) ) )
19 eqid 2443 . . . . . . . . . . 11  |-  ( k  e.  ( ZZ>= `  M
)  |->  if ( k  e.  A ,  C ,  0 ) )  =  ( k  e.  ( ZZ>= `  M )  |->  if ( k  e.  A ,  C , 
0 ) )
2019fvmpt2i 5801 . . . . . . . . . 10  |-  ( k  e.  ( ZZ>= `  M
)  ->  ( (
k  e.  ( ZZ>= `  M )  |->  if ( k  e.  A ,  C ,  0 ) ) `  k )  =  (  _I  `  if ( k  e.  A ,  C ,  0 ) ) )
21 iftrue 3818 . . . . . . . . . . 11  |-  ( k  e.  A  ->  if ( k  e.  A ,  C ,  0 )  =  C )
2221fveq2d 5716 . . . . . . . . . 10  |-  ( k  e.  A  ->  (  _I  `  if ( k  e.  A ,  C ,  0 ) )  =  (  _I  `  C ) )
2320, 22sylan9eq 2495 . . . . . . . . 9  |-  ( ( k  e.  ( ZZ>= `  M )  /\  k  e.  A )  ->  (
( k  e.  (
ZZ>= `  M )  |->  if ( k  e.  A ,  C ,  0 ) ) `  k )  =  (  _I  `  C ) )
24 iftrue 3818 . . . . . . . . . . 11  |-  ( k  e.  A  ->  if ( k  e.  A ,  ( ( k  e.  A  |->  C ) `
 k ) ,  0 )  =  ( ( k  e.  A  |->  C ) `  k
) )
25 eqid 2443 . . . . . . . . . . . 12  |-  ( k  e.  A  |->  C )  =  ( k  e.  A  |->  C )
2625fvmpt2i 5801 . . . . . . . . . . 11  |-  ( k  e.  A  ->  (
( k  e.  A  |->  C ) `  k
)  =  (  _I 
`  C ) )
2724, 26eqtrd 2475 . . . . . . . . . 10  |-  ( k  e.  A  ->  if ( k  e.  A ,  ( ( k  e.  A  |->  C ) `
 k ) ,  0 )  =  (  _I  `  C ) )
2827adantl 466 . . . . . . . . 9  |-  ( ( k  e.  ( ZZ>= `  M )  /\  k  e.  A )  ->  if ( k  e.  A ,  ( ( k  e.  A  |->  C ) `
 k ) ,  0 )  =  (  _I  `  C ) )
2923, 28eqtr4d 2478 . . . . . . . 8  |-  ( ( k  e.  ( ZZ>= `  M )  /\  k  e.  A )  ->  (
( k  e.  (
ZZ>= `  M )  |->  if ( k  e.  A ,  C ,  0 ) ) `  k )  =  if ( k  e.  A ,  ( ( k  e.  A  |->  C ) `  k
) ,  0 ) )
30 iffalse 3820 . . . . . . . . . . . 12  |-  ( -.  k  e.  A  ->  if ( k  e.  A ,  C ,  0 )  =  0 )
3130fveq2d 5716 . . . . . . . . . . 11  |-  ( -.  k  e.  A  -> 
(  _I  `  if ( k  e.  A ,  C ,  0 ) )  =  (  _I 
`  0 ) )
32 0z 10678 . . . . . . . . . . . 12  |-  0  e.  ZZ
33 fvi 5769 . . . . . . . . . . . 12  |-  ( 0  e.  ZZ  ->  (  _I  `  0 )  =  0 )
3432, 33ax-mp 5 . . . . . . . . . . 11  |-  (  _I 
`  0 )  =  0
3531, 34syl6eq 2491 . . . . . . . . . 10  |-  ( -.  k  e.  A  -> 
(  _I  `  if ( k  e.  A ,  C ,  0 ) )  =  0 )
3620, 35sylan9eq 2495 . . . . . . . . 9  |-  ( ( k  e.  ( ZZ>= `  M )  /\  -.  k  e.  A )  ->  ( ( k  e.  ( ZZ>= `  M )  |->  if ( k  e.  A ,  C , 
0 ) ) `  k )  =  0 )
37 iffalse 3820 . . . . . . . . . 10  |-  ( -.  k  e.  A  ->  if ( k  e.  A ,  ( ( k  e.  A  |->  C ) `
 k ) ,  0 )  =  0 )
3837adantl 466 . . . . . . . . 9  |-  ( ( k  e.  ( ZZ>= `  M )  /\  -.  k  e.  A )  ->  if ( k  e.  A ,  ( ( k  e.  A  |->  C ) `  k ) ,  0 )  =  0 )
3936, 38eqtr4d 2478 . . . . . . . 8  |-  ( ( k  e.  ( ZZ>= `  M )  /\  -.  k  e.  A )  ->  ( ( k  e.  ( ZZ>= `  M )  |->  if ( k  e.  A ,  C , 
0 ) ) `  k )  =  if ( k  e.  A ,  ( ( k  e.  A  |->  C ) `
 k ) ,  0 ) )
4029, 39pm2.61dan 789 . . . . . . 7  |-  ( k  e.  ( ZZ>= `  M
)  ->  ( (
k  e.  ( ZZ>= `  M )  |->  if ( k  e.  A ,  C ,  0 ) ) `  k )  =  if ( k  e.  A ,  ( ( k  e.  A  |->  C ) `  k
) ,  0 ) )
417, 13, 18, 40vtoclgaf 3056 . . . . . 6  |-  ( m  e.  ( ZZ>= `  M
)  ->  ( (
k  e.  ( ZZ>= `  M )  |->  if ( k  e.  A ,  C ,  0 ) ) `  m )  =  if ( m  e.  A ,  ( ( k  e.  A  |->  C ) `  m
) ,  0 ) )
4241adantl 466 . . . . 5  |-  ( ( ( ph  /\  M  e.  ZZ )  /\  m  e.  ( ZZ>= `  M )
)  ->  ( (
k  e.  ( ZZ>= `  M )  |->  if ( k  e.  A ,  C ,  0 ) ) `  m )  =  if ( m  e.  A ,  ( ( k  e.  A  |->  C ) `  m
) ,  0 ) )
43 sumss.2 . . . . . . . 8  |-  ( (
ph  /\  k  e.  A )  ->  C  e.  CC )
4443, 25fmptd 5888 . . . . . . 7  |-  ( ph  ->  ( k  e.  A  |->  C ) : A --> CC )
4544adantr 465 . . . . . 6  |-  ( (
ph  /\  M  e.  ZZ )  ->  ( k  e.  A  |->  C ) : A --> CC )
4645ffvelrnda 5864 . . . . 5  |-  ( ( ( ph  /\  M  e.  ZZ )  /\  m  e.  A )  ->  (
( k  e.  A  |->  C ) `  m
)  e.  CC )
471, 2, 6, 42, 46zsum 13216 . . . 4  |-  ( (
ph  /\  M  e.  ZZ )  ->  sum_ m  e.  A  ( (
k  e.  A  |->  C ) `  m )  =  (  ~~>  `  seq M (  +  , 
( k  e.  (
ZZ>= `  M )  |->  if ( k  e.  A ,  C ,  0 ) ) ) ) )
484adantr 465 . . . . 5  |-  ( (
ph  /\  M  e.  ZZ )  ->  B  C_  ( ZZ>= `  M )
)
49 nfv 1673 . . . . . . . . 9  |-  F/ k
ph
50 nfv 1673 . . . . . . . . . . 11  |-  F/ k  m  e.  B
51 nffvmpt1 5720 . . . . . . . . . . 11  |-  F/_ k
( ( k  e.  B  |->  C ) `  m )
5250, 51, 11nfif 3839 . . . . . . . . . 10  |-  F/_ k if ( m  e.  B ,  ( ( k  e.  B  |->  C ) `
 m ) ,  0 )
538, 52nfeq 2599 . . . . . . . . 9  |-  F/ k ( ( k  e.  ( ZZ>= `  M )  |->  if ( k  e.  A ,  C , 
0 ) ) `  m )  =  if ( m  e.  B ,  ( ( k  e.  B  |->  C ) `
 m ) ,  0 )
5449, 53nfim 1853 . . . . . . . 8  |-  F/ k ( ph  ->  (
( k  e.  (
ZZ>= `  M )  |->  if ( k  e.  A ,  C ,  0 ) ) `  m )  =  if ( m  e.  B ,  ( ( k  e.  B  |->  C ) `  m
) ,  0 ) )
55 eleq1 2503 . . . . . . . . . . 11  |-  ( k  =  m  ->  (
k  e.  B  <->  m  e.  B ) )
56 fveq2 5712 . . . . . . . . . . 11  |-  ( k  =  m  ->  (
( k  e.  B  |->  C ) `  k
)  =  ( ( k  e.  B  |->  C ) `  m ) )
5755, 56ifbieq1d 3833 . . . . . . . . . 10  |-  ( k  =  m  ->  if ( k  e.  B ,  ( ( k  e.  B  |->  C ) `
 k ) ,  0 )  =  if ( m  e.  B ,  ( ( k  e.  B  |->  C ) `
 m ) ,  0 ) )
5814, 57eqeq12d 2457 . . . . . . . . 9  |-  ( k  =  m  ->  (
( ( k  e.  ( ZZ>= `  M )  |->  if ( k  e.  A ,  C , 
0 ) ) `  k )  =  if ( k  e.  B ,  ( ( k  e.  B  |->  C ) `
 k ) ,  0 )  <->  ( (
k  e.  ( ZZ>= `  M )  |->  if ( k  e.  A ,  C ,  0 ) ) `  m )  =  if ( m  e.  B ,  ( ( k  e.  B  |->  C ) `  m
) ,  0 ) ) )
5958imbi2d 316 . . . . . . . 8  |-  ( k  =  m  ->  (
( ph  ->  ( ( k  e.  ( ZZ>= `  M )  |->  if ( k  e.  A ,  C ,  0 ) ) `  k )  =  if ( k  e.  B ,  ( ( k  e.  B  |->  C ) `  k
) ,  0 ) )  <->  ( ph  ->  ( ( k  e.  (
ZZ>= `  M )  |->  if ( k  e.  A ,  C ,  0 ) ) `  m )  =  if ( m  e.  B ,  ( ( k  e.  B  |->  C ) `  m
) ,  0 ) ) ) )
6023adantll 713 . . . . . . . . . . 11  |-  ( ( ( ph  /\  k  e.  ( ZZ>= `  M )
)  /\  k  e.  A )  ->  (
( k  e.  (
ZZ>= `  M )  |->  if ( k  e.  A ,  C ,  0 ) ) `  k )  =  (  _I  `  C ) )
613adantr 465 . . . . . . . . . . . . 13  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  A  C_  B
)
6261sselda 3377 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  k  e.  ( ZZ>= `  M )
)  /\  k  e.  A )  ->  k  e.  B )
63 iftrue 3818 . . . . . . . . . . . . 13  |-  ( k  e.  B  ->  if ( k  e.  B ,  ( ( k  e.  B  |->  C ) `
 k ) ,  0 )  =  ( ( k  e.  B  |->  C ) `  k
) )
64 eqid 2443 . . . . . . . . . . . . . 14  |-  ( k  e.  B  |->  C )  =  ( k  e.  B  |->  C )
6564fvmpt2i 5801 . . . . . . . . . . . . 13  |-  ( k  e.  B  ->  (
( k  e.  B  |->  C ) `  k
)  =  (  _I 
`  C ) )
6663, 65eqtrd 2475 . . . . . . . . . . . 12  |-  ( k  e.  B  ->  if ( k  e.  B ,  ( ( k  e.  B  |->  C ) `
 k ) ,  0 )  =  (  _I  `  C ) )
6762, 66syl 16 . . . . . . . . . . 11  |-  ( ( ( ph  /\  k  e.  ( ZZ>= `  M )
)  /\  k  e.  A )  ->  if ( k  e.  B ,  ( ( k  e.  B  |->  C ) `
 k ) ,  0 )  =  (  _I  `  C ) )
6860, 67eqtr4d 2478 . . . . . . . . . 10  |-  ( ( ( ph  /\  k  e.  ( ZZ>= `  M )
)  /\  k  e.  A )  ->  (
( k  e.  (
ZZ>= `  M )  |->  if ( k  e.  A ,  C ,  0 ) ) `  k )  =  if ( k  e.  B ,  ( ( k  e.  B  |->  C ) `  k
) ,  0 ) )
6936adantll 713 . . . . . . . . . . 11  |-  ( ( ( ph  /\  k  e.  ( ZZ>= `  M )
)  /\  -.  k  e.  A )  ->  (
( k  e.  (
ZZ>= `  M )  |->  if ( k  e.  A ,  C ,  0 ) ) `  k )  =  0 )
7066ad2antrl 727 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ( k  e.  B  /\  -.  k  e.  A ) )  ->  if ( k  e.  B ,  ( ( k  e.  B  |->  C ) `
 k ) ,  0 )  =  (  _I  `  C ) )
71 eldif 3359 . . . . . . . . . . . . . . . . 17  |-  ( k  e.  ( B  \  A )  <->  ( k  e.  B  /\  -.  k  e.  A ) )
72 sumss.3 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  k  e.  ( B  \  A ) )  ->  C  = 
0 )
7372fveq2d 5716 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  k  e.  ( B  \  A ) )  ->  (  _I  `  C )  =  (  _I  `  0 ) )
74 0cn 9399 . . . . . . . . . . . . . . . . . . 19  |-  0  e.  CC
75 fvi 5769 . . . . . . . . . . . . . . . . . . 19  |-  ( 0  e.  CC  ->  (  _I  `  0 )  =  0 )
7674, 75ax-mp 5 . . . . . . . . . . . . . . . . . 18  |-  (  _I 
`  0 )  =  0
7773, 76syl6eq 2491 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  k  e.  ( B  \  A ) )  ->  (  _I  `  C )  =  0 )
7871, 77sylan2br 476 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ( k  e.  B  /\  -.  k  e.  A ) )  -> 
(  _I  `  C
)  =  0 )
7970, 78eqtrd 2475 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( k  e.  B  /\  -.  k  e.  A ) )  ->  if ( k  e.  B ,  ( ( k  e.  B  |->  C ) `
 k ) ,  0 )  =  0 )
8079expr 615 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  k  e.  B )  ->  ( -.  k  e.  A  ->  if ( k  e.  B ,  ( ( k  e.  B  |->  C ) `  k ) ,  0 )  =  0 ) )
81 iffalse 3820 . . . . . . . . . . . . . . . 16  |-  ( -.  k  e.  B  ->  if ( k  e.  B ,  ( ( k  e.  B  |->  C ) `
 k ) ,  0 )  =  0 )
8281adantl 466 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  -.  k  e.  B )  ->  if ( k  e.  B ,  ( ( k  e.  B  |->  C ) `
 k ) ,  0 )  =  0 )
8382a1d 25 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  -.  k  e.  B )  ->  ( -.  k  e.  A  ->  if ( k  e.  B ,  ( ( k  e.  B  |->  C ) `  k ) ,  0 )  =  0 ) )
8480, 83pm2.61dan 789 . . . . . . . . . . . . 13  |-  ( ph  ->  ( -.  k  e.  A  ->  if (
k  e.  B , 
( ( k  e.  B  |->  C ) `  k ) ,  0 )  =  0 ) )
8584adantr 465 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( -.  k  e.  A  ->  if ( k  e.  B ,  ( ( k  e.  B  |->  C ) `
 k ) ,  0 )  =  0 ) )
8685imp 429 . . . . . . . . . . 11  |-  ( ( ( ph  /\  k  e.  ( ZZ>= `  M )
)  /\  -.  k  e.  A )  ->  if ( k  e.  B ,  ( ( k  e.  B  |->  C ) `
 k ) ,  0 )  =  0 )
8769, 86eqtr4d 2478 . . . . . . . . . 10  |-  ( ( ( ph  /\  k  e.  ( ZZ>= `  M )
)  /\  -.  k  e.  A )  ->  (
( k  e.  (
ZZ>= `  M )  |->  if ( k  e.  A ,  C ,  0 ) ) `  k )  =  if ( k  e.  B ,  ( ( k  e.  B  |->  C ) `  k
) ,  0 ) )
8868, 87pm2.61dan 789 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( (
k  e.  ( ZZ>= `  M )  |->  if ( k  e.  A ,  C ,  0 ) ) `  k )  =  if ( k  e.  B ,  ( ( k  e.  B  |->  C ) `  k
) ,  0 ) )
8988expcom 435 . . . . . . . 8  |-  ( k  e.  ( ZZ>= `  M
)  ->  ( ph  ->  ( ( k  e.  ( ZZ>= `  M )  |->  if ( k  e.  A ,  C , 
0 ) ) `  k )  =  if ( k  e.  B ,  ( ( k  e.  B  |->  C ) `
 k ) ,  0 ) ) )
907, 54, 59, 89vtoclgaf 3056 . . . . . . 7  |-  ( m  e.  ( ZZ>= `  M
)  ->  ( ph  ->  ( ( k  e.  ( ZZ>= `  M )  |->  if ( k  e.  A ,  C , 
0 ) ) `  m )  =  if ( m  e.  B ,  ( ( k  e.  B  |->  C ) `
 m ) ,  0 ) ) )
9190impcom 430 . . . . . 6  |-  ( (
ph  /\  m  e.  ( ZZ>= `  M )
)  ->  ( (
k  e.  ( ZZ>= `  M )  |->  if ( k  e.  A ,  C ,  0 ) ) `  m )  =  if ( m  e.  B ,  ( ( k  e.  B  |->  C ) `  m
) ,  0 ) )
9291adantlr 714 . . . . 5  |-  ( ( ( ph  /\  M  e.  ZZ )  /\  m  e.  ( ZZ>= `  M )
)  ->  ( (
k  e.  ( ZZ>= `  M )  |->  if ( k  e.  A ,  C ,  0 ) ) `  m )  =  if ( m  e.  B ,  ( ( k  e.  B  |->  C ) `  m
) ,  0 ) )
9343ex 434 . . . . . . . . . 10  |-  ( ph  ->  ( k  e.  A  ->  C  e.  CC ) )
9493adantr 465 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  B )  ->  (
k  e.  A  ->  C  e.  CC )
)
9572, 74syl6eqel 2531 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  ( B  \  A ) )  ->  C  e.  CC )
9671, 95sylan2br 476 . . . . . . . . . 10  |-  ( (
ph  /\  ( k  e.  B  /\  -.  k  e.  A ) )  ->  C  e.  CC )
9796expr 615 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  B )  ->  ( -.  k  e.  A  ->  C  e.  CC ) )
9894, 97pm2.61d 158 . . . . . . . 8  |-  ( (
ph  /\  k  e.  B )  ->  C  e.  CC )
9998, 64fmptd 5888 . . . . . . 7  |-  ( ph  ->  ( k  e.  B  |->  C ) : B --> CC )
10099adantr 465 . . . . . 6  |-  ( (
ph  /\  M  e.  ZZ )  ->  ( k  e.  B  |->  C ) : B --> CC )
101100ffvelrnda 5864 . . . . 5  |-  ( ( ( ph  /\  M  e.  ZZ )  /\  m  e.  B )  ->  (
( k  e.  B  |->  C ) `  m
)  e.  CC )
1021, 2, 48, 92, 101zsum 13216 . . . 4  |-  ( (
ph  /\  M  e.  ZZ )  ->  sum_ m  e.  B  ( (
k  e.  B  |->  C ) `  m )  =  (  ~~>  `  seq M (  +  , 
( k  e.  (
ZZ>= `  M )  |->  if ( k  e.  A ,  C ,  0 ) ) ) ) )
10347, 102eqtr4d 2478 . . 3  |-  ( (
ph  /\  M  e.  ZZ )  ->  sum_ m  e.  A  ( (
k  e.  A  |->  C ) `  m )  =  sum_ m  e.  B  ( ( k  e.  B  |->  C ) `  m ) )
104 sumfc 13207 . . 3  |-  sum_ m  e.  A  ( (
k  e.  A  |->  C ) `  m )  =  sum_ k  e.  A  C
105 sumfc 13207 . . 3  |-  sum_ m  e.  B  ( (
k  e.  B  |->  C ) `  m )  =  sum_ k  e.  B  C
106103, 104, 1053eqtr3g 2498 . 2  |-  ( (
ph  /\  M  e.  ZZ )  ->  sum_ k  e.  A  C  =  sum_ k  e.  B  C
)
1073adantr 465 . . . . . 6  |-  ( (
ph  /\  -.  M  e.  ZZ )  ->  A  C_  B )
108 uzf 10885 . . . . . . . . . . . 12  |-  ZZ>= : ZZ --> ~P ZZ
109108fdmi 5585 . . . . . . . . . . 11  |-  dom  ZZ>=  =  ZZ
110109eleq2i 2507 . . . . . . . . . 10  |-  ( M  e.  dom  ZZ>=  <->  M  e.  ZZ )
111 ndmfv 5735 . . . . . . . . . 10  |-  ( -.  M  e.  dom  ZZ>=  -> 
( ZZ>= `  M )  =  (/) )
112110, 111sylnbir 307 . . . . . . . . 9  |-  ( -.  M  e.  ZZ  ->  (
ZZ>= `  M )  =  (/) )
113112sseq2d 3405 . . . . . . . 8  |-  ( -.  M  e.  ZZ  ->  ( B  C_  ( ZZ>= `  M )  <->  B  C_  (/) ) )
1144, 113syl5ib 219 . . . . . . 7  |-  ( -.  M  e.  ZZ  ->  (
ph  ->  B  C_  (/) ) )
115114impcom 430 . . . . . 6  |-  ( (
ph  /\  -.  M  e.  ZZ )  ->  B  C_  (/) )
116107, 115sstrd 3387 . . . . 5  |-  ( (
ph  /\  -.  M  e.  ZZ )  ->  A  C_  (/) )
117 ss0 3689 . . . . 5  |-  ( A 
C_  (/)  ->  A  =  (/) )
118116, 117syl 16 . . . 4  |-  ( (
ph  /\  -.  M  e.  ZZ )  ->  A  =  (/) )
119 ss0 3689 . . . . 5  |-  ( B 
C_  (/)  ->  B  =  (/) )
120115, 119syl 16 . . . 4  |-  ( (
ph  /\  -.  M  e.  ZZ )  ->  B  =  (/) )
121118, 120eqtr4d 2478 . . 3  |-  ( (
ph  /\  -.  M  e.  ZZ )  ->  A  =  B )
122121sumeq1d 13199 . 2  |-  ( (
ph  /\  -.  M  e.  ZZ )  ->  sum_ k  e.  A  C  =  sum_ k  e.  B  C
)
123106, 122pm2.61dan 789 1  |-  ( ph  -> 
sum_ k  e.  A  C  =  sum_ k  e.  B  C )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 369    = wceq 1369    e. wcel 1756    \ cdif 3346    C_ wss 3349   (/)c0 3658   ifcif 3812   ~Pcpw 3881    e. cmpt 4371    _I cid 4652   dom cdm 4861   -->wf 5435   ` cfv 5439   CCcc 9301   0cc0 9303    + caddc 9306   ZZcz 10667   ZZ>=cuz 10882    seqcseq 11827    ~~> cli 12983   sum_csu 13184
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4424  ax-sep 4434  ax-nul 4442  ax-pow 4491  ax-pr 4552  ax-un 6393  ax-inf2 7868  ax-cnex 9359  ax-resscn 9360  ax-1cn 9361  ax-icn 9362  ax-addcl 9363  ax-addrcl 9364  ax-mulcl 9365  ax-mulrcl 9366  ax-mulcom 9367  ax-addass 9368  ax-mulass 9369  ax-distr 9370  ax-i2m1 9371  ax-1ne0 9372  ax-1rid 9373  ax-rnegex 9374  ax-rrecex 9375  ax-cnre 9376  ax-pre-lttri 9377  ax-pre-lttrn 9378  ax-pre-ltadd 9379  ax-pre-mulgt0 9380
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-fal 1375  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2577  df-ne 2622  df-nel 2623  df-ral 2741  df-rex 2742  df-reu 2743  df-rmo 2744  df-rab 2745  df-v 2995  df-sbc 3208  df-csb 3310  df-dif 3352  df-un 3354  df-in 3356  df-ss 3363  df-pss 3365  df-nul 3659  df-if 3813  df-pw 3883  df-sn 3899  df-pr 3901  df-tp 3903  df-op 3905  df-uni 4113  df-int 4150  df-iun 4194  df-br 4314  df-opab 4372  df-mpt 4373  df-tr 4407  df-eprel 4653  df-id 4657  df-po 4662  df-so 4663  df-fr 4700  df-se 4701  df-we 4702  df-ord 4743  df-on 4744  df-lim 4745  df-suc 4746  df-xp 4867  df-rel 4868  df-cnv 4869  df-co 4870  df-dm 4871  df-rn 4872  df-res 4873  df-ima 4874  df-iota 5402  df-fun 5441  df-fn 5442  df-f 5443  df-f1 5444  df-fo 5445  df-f1o 5446  df-fv 5447  df-isom 5448  df-riota 6073  df-ov 6115  df-oprab 6116  df-mpt2 6117  df-om 6498  df-1st 6598  df-2nd 6599  df-recs 6853  df-rdg 6887  df-1o 6941  df-oadd 6945  df-er 7122  df-en 7332  df-dom 7333  df-sdom 7334  df-fin 7335  df-oi 7745  df-card 8130  df-pnf 9441  df-mnf 9442  df-xr 9443  df-ltxr 9444  df-le 9445  df-sub 9618  df-neg 9619  df-div 10015  df-nn 10344  df-2 10401  df-n0 10601  df-z 10668  df-uz 10883  df-rp 11013  df-fz 11459  df-fzo 11570  df-seq 11828  df-exp 11887  df-hash 12125  df-cj 12609  df-re 12610  df-im 12611  df-sqr 12745  df-abs 12746  df-clim 12987  df-sum 13185
This theorem is referenced by:  fsumss  13223  sumss2  13224  binomlem  13313  eulerpartlemsv2  26763  eulerpartlemsv3  26766  eulerpartlemv  26769  eulerpartlemb  26773
  Copyright terms: Public domain W3C validator