MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sumss Structured version   Unicode version

Theorem sumss 13197
Description: Change the index set to a subset in an upper integer sum. (Contributed by Mario Carneiro, 21-Apr-2014.)
Hypotheses
Ref Expression
sumss.1  |-  ( ph  ->  A  C_  B )
sumss.2  |-  ( (
ph  /\  k  e.  A )  ->  C  e.  CC )
sumss.3  |-  ( (
ph  /\  k  e.  ( B  \  A ) )  ->  C  = 
0 )
sumss.4  |-  ( ph  ->  B  C_  ( ZZ>= `  M ) )
Assertion
Ref Expression
sumss  |-  ( ph  -> 
sum_ k  e.  A  C  =  sum_ k  e.  B  C )
Distinct variable groups:    A, k    B, k    ph, k    k, M
Allowed substitution hint:    C( k)

Proof of Theorem sumss
Dummy variable  m is distinct from all other variables.
StepHypRef Expression
1 eqid 2441 . . . . 5  |-  ( ZZ>= `  M )  =  (
ZZ>= `  M )
2 simpr 458 . . . . 5  |-  ( (
ph  /\  M  e.  ZZ )  ->  M  e.  ZZ )
3 sumss.1 . . . . . . 7  |-  ( ph  ->  A  C_  B )
4 sumss.4 . . . . . . 7  |-  ( ph  ->  B  C_  ( ZZ>= `  M ) )
53, 4sstrd 3363 . . . . . 6  |-  ( ph  ->  A  C_  ( ZZ>= `  M ) )
65adantr 462 . . . . 5  |-  ( (
ph  /\  M  e.  ZZ )  ->  A  C_  ( ZZ>= `  M )
)
7 nfcv 2577 . . . . . . 7  |-  F/_ k
m
8 nffvmpt1 5696 . . . . . . . 8  |-  F/_ k
( ( k  e.  ( ZZ>= `  M )  |->  if ( k  e.  A ,  C , 
0 ) ) `  m )
9 nfv 1678 . . . . . . . . 9  |-  F/ k  m  e.  A
10 nffvmpt1 5696 . . . . . . . . 9  |-  F/_ k
( ( k  e.  A  |->  C ) `  m )
11 nfcv 2577 . . . . . . . . 9  |-  F/_ k
0
129, 10, 11nfif 3815 . . . . . . . 8  |-  F/_ k if ( m  e.  A ,  ( ( k  e.  A  |->  C ) `
 m ) ,  0 )
138, 12nfeq 2584 . . . . . . 7  |-  F/ k ( ( k  e.  ( ZZ>= `  M )  |->  if ( k  e.  A ,  C , 
0 ) ) `  m )  =  if ( m  e.  A ,  ( ( k  e.  A  |->  C ) `
 m ) ,  0 )
14 fveq2 5688 . . . . . . . 8  |-  ( k  =  m  ->  (
( k  e.  (
ZZ>= `  M )  |->  if ( k  e.  A ,  C ,  0 ) ) `  k )  =  ( ( k  e.  ( ZZ>= `  M
)  |->  if ( k  e.  A ,  C ,  0 ) ) `
 m ) )
15 eleq1 2501 . . . . . . . . 9  |-  ( k  =  m  ->  (
k  e.  A  <->  m  e.  A ) )
16 fveq2 5688 . . . . . . . . 9  |-  ( k  =  m  ->  (
( k  e.  A  |->  C ) `  k
)  =  ( ( k  e.  A  |->  C ) `  m ) )
1715, 16ifbieq1d 3809 . . . . . . . 8  |-  ( k  =  m  ->  if ( k  e.  A ,  ( ( k  e.  A  |->  C ) `
 k ) ,  0 )  =  if ( m  e.  A ,  ( ( k  e.  A  |->  C ) `
 m ) ,  0 ) )
1814, 17eqeq12d 2455 . . . . . . 7  |-  ( k  =  m  ->  (
( ( k  e.  ( ZZ>= `  M )  |->  if ( k  e.  A ,  C , 
0 ) ) `  k )  =  if ( k  e.  A ,  ( ( k  e.  A  |->  C ) `
 k ) ,  0 )  <->  ( (
k  e.  ( ZZ>= `  M )  |->  if ( k  e.  A ,  C ,  0 ) ) `  m )  =  if ( m  e.  A ,  ( ( k  e.  A  |->  C ) `  m
) ,  0 ) ) )
19 eqid 2441 . . . . . . . . . . 11  |-  ( k  e.  ( ZZ>= `  M
)  |->  if ( k  e.  A ,  C ,  0 ) )  =  ( k  e.  ( ZZ>= `  M )  |->  if ( k  e.  A ,  C , 
0 ) )
2019fvmpt2i 5777 . . . . . . . . . 10  |-  ( k  e.  ( ZZ>= `  M
)  ->  ( (
k  e.  ( ZZ>= `  M )  |->  if ( k  e.  A ,  C ,  0 ) ) `  k )  =  (  _I  `  if ( k  e.  A ,  C ,  0 ) ) )
21 iftrue 3794 . . . . . . . . . . 11  |-  ( k  e.  A  ->  if ( k  e.  A ,  C ,  0 )  =  C )
2221fveq2d 5692 . . . . . . . . . 10  |-  ( k  e.  A  ->  (  _I  `  if ( k  e.  A ,  C ,  0 ) )  =  (  _I  `  C ) )
2320, 22sylan9eq 2493 . . . . . . . . 9  |-  ( ( k  e.  ( ZZ>= `  M )  /\  k  e.  A )  ->  (
( k  e.  (
ZZ>= `  M )  |->  if ( k  e.  A ,  C ,  0 ) ) `  k )  =  (  _I  `  C ) )
24 iftrue 3794 . . . . . . . . . . 11  |-  ( k  e.  A  ->  if ( k  e.  A ,  ( ( k  e.  A  |->  C ) `
 k ) ,  0 )  =  ( ( k  e.  A  |->  C ) `  k
) )
25 eqid 2441 . . . . . . . . . . . 12  |-  ( k  e.  A  |->  C )  =  ( k  e.  A  |->  C )
2625fvmpt2i 5777 . . . . . . . . . . 11  |-  ( k  e.  A  ->  (
( k  e.  A  |->  C ) `  k
)  =  (  _I 
`  C ) )
2724, 26eqtrd 2473 . . . . . . . . . 10  |-  ( k  e.  A  ->  if ( k  e.  A ,  ( ( k  e.  A  |->  C ) `
 k ) ,  0 )  =  (  _I  `  C ) )
2827adantl 463 . . . . . . . . 9  |-  ( ( k  e.  ( ZZ>= `  M )  /\  k  e.  A )  ->  if ( k  e.  A ,  ( ( k  e.  A  |->  C ) `
 k ) ,  0 )  =  (  _I  `  C ) )
2923, 28eqtr4d 2476 . . . . . . . 8  |-  ( ( k  e.  ( ZZ>= `  M )  /\  k  e.  A )  ->  (
( k  e.  (
ZZ>= `  M )  |->  if ( k  e.  A ,  C ,  0 ) ) `  k )  =  if ( k  e.  A ,  ( ( k  e.  A  |->  C ) `  k
) ,  0 ) )
30 iffalse 3796 . . . . . . . . . . . 12  |-  ( -.  k  e.  A  ->  if ( k  e.  A ,  C ,  0 )  =  0 )
3130fveq2d 5692 . . . . . . . . . . 11  |-  ( -.  k  e.  A  -> 
(  _I  `  if ( k  e.  A ,  C ,  0 ) )  =  (  _I 
`  0 ) )
32 0z 10653 . . . . . . . . . . . 12  |-  0  e.  ZZ
33 fvi 5745 . . . . . . . . . . . 12  |-  ( 0  e.  ZZ  ->  (  _I  `  0 )  =  0 )
3432, 33ax-mp 5 . . . . . . . . . . 11  |-  (  _I 
`  0 )  =  0
3531, 34syl6eq 2489 . . . . . . . . . 10  |-  ( -.  k  e.  A  -> 
(  _I  `  if ( k  e.  A ,  C ,  0 ) )  =  0 )
3620, 35sylan9eq 2493 . . . . . . . . 9  |-  ( ( k  e.  ( ZZ>= `  M )  /\  -.  k  e.  A )  ->  ( ( k  e.  ( ZZ>= `  M )  |->  if ( k  e.  A ,  C , 
0 ) ) `  k )  =  0 )
37 iffalse 3796 . . . . . . . . . 10  |-  ( -.  k  e.  A  ->  if ( k  e.  A ,  ( ( k  e.  A  |->  C ) `
 k ) ,  0 )  =  0 )
3837adantl 463 . . . . . . . . 9  |-  ( ( k  e.  ( ZZ>= `  M )  /\  -.  k  e.  A )  ->  if ( k  e.  A ,  ( ( k  e.  A  |->  C ) `  k ) ,  0 )  =  0 )
3936, 38eqtr4d 2476 . . . . . . . 8  |-  ( ( k  e.  ( ZZ>= `  M )  /\  -.  k  e.  A )  ->  ( ( k  e.  ( ZZ>= `  M )  |->  if ( k  e.  A ,  C , 
0 ) ) `  k )  =  if ( k  e.  A ,  ( ( k  e.  A  |->  C ) `
 k ) ,  0 ) )
4029, 39pm2.61dan 784 . . . . . . 7  |-  ( k  e.  ( ZZ>= `  M
)  ->  ( (
k  e.  ( ZZ>= `  M )  |->  if ( k  e.  A ,  C ,  0 ) ) `  k )  =  if ( k  e.  A ,  ( ( k  e.  A  |->  C ) `  k
) ,  0 ) )
417, 13, 18, 40vtoclgaf 3032 . . . . . 6  |-  ( m  e.  ( ZZ>= `  M
)  ->  ( (
k  e.  ( ZZ>= `  M )  |->  if ( k  e.  A ,  C ,  0 ) ) `  m )  =  if ( m  e.  A ,  ( ( k  e.  A  |->  C ) `  m
) ,  0 ) )
4241adantl 463 . . . . 5  |-  ( ( ( ph  /\  M  e.  ZZ )  /\  m  e.  ( ZZ>= `  M )
)  ->  ( (
k  e.  ( ZZ>= `  M )  |->  if ( k  e.  A ,  C ,  0 ) ) `  m )  =  if ( m  e.  A ,  ( ( k  e.  A  |->  C ) `  m
) ,  0 ) )
43 sumss.2 . . . . . . . 8  |-  ( (
ph  /\  k  e.  A )  ->  C  e.  CC )
4443, 25fmptd 5864 . . . . . . 7  |-  ( ph  ->  ( k  e.  A  |->  C ) : A --> CC )
4544adantr 462 . . . . . 6  |-  ( (
ph  /\  M  e.  ZZ )  ->  ( k  e.  A  |->  C ) : A --> CC )
4645ffvelrnda 5840 . . . . 5  |-  ( ( ( ph  /\  M  e.  ZZ )  /\  m  e.  A )  ->  (
( k  e.  A  |->  C ) `  m
)  e.  CC )
471, 2, 6, 42, 46zsum 13191 . . . 4  |-  ( (
ph  /\  M  e.  ZZ )  ->  sum_ m  e.  A  ( (
k  e.  A  |->  C ) `  m )  =  (  ~~>  `  seq M (  +  , 
( k  e.  (
ZZ>= `  M )  |->  if ( k  e.  A ,  C ,  0 ) ) ) ) )
484adantr 462 . . . . 5  |-  ( (
ph  /\  M  e.  ZZ )  ->  B  C_  ( ZZ>= `  M )
)
49 nfv 1678 . . . . . . . . 9  |-  F/ k
ph
50 nfv 1678 . . . . . . . . . . 11  |-  F/ k  m  e.  B
51 nffvmpt1 5696 . . . . . . . . . . 11  |-  F/_ k
( ( k  e.  B  |->  C ) `  m )
5250, 51, 11nfif 3815 . . . . . . . . . 10  |-  F/_ k if ( m  e.  B ,  ( ( k  e.  B  |->  C ) `
 m ) ,  0 )
538, 52nfeq 2584 . . . . . . . . 9  |-  F/ k ( ( k  e.  ( ZZ>= `  M )  |->  if ( k  e.  A ,  C , 
0 ) ) `  m )  =  if ( m  e.  B ,  ( ( k  e.  B  |->  C ) `
 m ) ,  0 )
5449, 53nfim 1857 . . . . . . . 8  |-  F/ k ( ph  ->  (
( k  e.  (
ZZ>= `  M )  |->  if ( k  e.  A ,  C ,  0 ) ) `  m )  =  if ( m  e.  B ,  ( ( k  e.  B  |->  C ) `  m
) ,  0 ) )
55 eleq1 2501 . . . . . . . . . . 11  |-  ( k  =  m  ->  (
k  e.  B  <->  m  e.  B ) )
56 fveq2 5688 . . . . . . . . . . 11  |-  ( k  =  m  ->  (
( k  e.  B  |->  C ) `  k
)  =  ( ( k  e.  B  |->  C ) `  m ) )
5755, 56ifbieq1d 3809 . . . . . . . . . 10  |-  ( k  =  m  ->  if ( k  e.  B ,  ( ( k  e.  B  |->  C ) `
 k ) ,  0 )  =  if ( m  e.  B ,  ( ( k  e.  B  |->  C ) `
 m ) ,  0 ) )
5814, 57eqeq12d 2455 . . . . . . . . 9  |-  ( k  =  m  ->  (
( ( k  e.  ( ZZ>= `  M )  |->  if ( k  e.  A ,  C , 
0 ) ) `  k )  =  if ( k  e.  B ,  ( ( k  e.  B  |->  C ) `
 k ) ,  0 )  <->  ( (
k  e.  ( ZZ>= `  M )  |->  if ( k  e.  A ,  C ,  0 ) ) `  m )  =  if ( m  e.  B ,  ( ( k  e.  B  |->  C ) `  m
) ,  0 ) ) )
5958imbi2d 316 . . . . . . . 8  |-  ( k  =  m  ->  (
( ph  ->  ( ( k  e.  ( ZZ>= `  M )  |->  if ( k  e.  A ,  C ,  0 ) ) `  k )  =  if ( k  e.  B ,  ( ( k  e.  B  |->  C ) `  k
) ,  0 ) )  <->  ( ph  ->  ( ( k  e.  (
ZZ>= `  M )  |->  if ( k  e.  A ,  C ,  0 ) ) `  m )  =  if ( m  e.  B ,  ( ( k  e.  B  |->  C ) `  m
) ,  0 ) ) ) )
6023adantll 708 . . . . . . . . . . 11  |-  ( ( ( ph  /\  k  e.  ( ZZ>= `  M )
)  /\  k  e.  A )  ->  (
( k  e.  (
ZZ>= `  M )  |->  if ( k  e.  A ,  C ,  0 ) ) `  k )  =  (  _I  `  C ) )
613adantr 462 . . . . . . . . . . . . 13  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  A  C_  B
)
6261sselda 3353 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  k  e.  ( ZZ>= `  M )
)  /\  k  e.  A )  ->  k  e.  B )
63 iftrue 3794 . . . . . . . . . . . . 13  |-  ( k  e.  B  ->  if ( k  e.  B ,  ( ( k  e.  B  |->  C ) `
 k ) ,  0 )  =  ( ( k  e.  B  |->  C ) `  k
) )
64 eqid 2441 . . . . . . . . . . . . . 14  |-  ( k  e.  B  |->  C )  =  ( k  e.  B  |->  C )
6564fvmpt2i 5777 . . . . . . . . . . . . 13  |-  ( k  e.  B  ->  (
( k  e.  B  |->  C ) `  k
)  =  (  _I 
`  C ) )
6663, 65eqtrd 2473 . . . . . . . . . . . 12  |-  ( k  e.  B  ->  if ( k  e.  B ,  ( ( k  e.  B  |->  C ) `
 k ) ,  0 )  =  (  _I  `  C ) )
6762, 66syl 16 . . . . . . . . . . 11  |-  ( ( ( ph  /\  k  e.  ( ZZ>= `  M )
)  /\  k  e.  A )  ->  if ( k  e.  B ,  ( ( k  e.  B  |->  C ) `
 k ) ,  0 )  =  (  _I  `  C ) )
6860, 67eqtr4d 2476 . . . . . . . . . 10  |-  ( ( ( ph  /\  k  e.  ( ZZ>= `  M )
)  /\  k  e.  A )  ->  (
( k  e.  (
ZZ>= `  M )  |->  if ( k  e.  A ,  C ,  0 ) ) `  k )  =  if ( k  e.  B ,  ( ( k  e.  B  |->  C ) `  k
) ,  0 ) )
6936adantll 708 . . . . . . . . . . 11  |-  ( ( ( ph  /\  k  e.  ( ZZ>= `  M )
)  /\  -.  k  e.  A )  ->  (
( k  e.  (
ZZ>= `  M )  |->  if ( k  e.  A ,  C ,  0 ) ) `  k )  =  0 )
7066ad2antrl 722 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ( k  e.  B  /\  -.  k  e.  A ) )  ->  if ( k  e.  B ,  ( ( k  e.  B  |->  C ) `
 k ) ,  0 )  =  (  _I  `  C ) )
71 eldif 3335 . . . . . . . . . . . . . . . . 17  |-  ( k  e.  ( B  \  A )  <->  ( k  e.  B  /\  -.  k  e.  A ) )
72 sumss.3 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  k  e.  ( B  \  A ) )  ->  C  = 
0 )
7372fveq2d 5692 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  k  e.  ( B  \  A ) )  ->  (  _I  `  C )  =  (  _I  `  0 ) )
74 0cn 9374 . . . . . . . . . . . . . . . . . . 19  |-  0  e.  CC
75 fvi 5745 . . . . . . . . . . . . . . . . . . 19  |-  ( 0  e.  CC  ->  (  _I  `  0 )  =  0 )
7674, 75ax-mp 5 . . . . . . . . . . . . . . . . . 18  |-  (  _I 
`  0 )  =  0
7773, 76syl6eq 2489 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  k  e.  ( B  \  A ) )  ->  (  _I  `  C )  =  0 )
7871, 77sylan2br 473 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ( k  e.  B  /\  -.  k  e.  A ) )  -> 
(  _I  `  C
)  =  0 )
7970, 78eqtrd 2473 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( k  e.  B  /\  -.  k  e.  A ) )  ->  if ( k  e.  B ,  ( ( k  e.  B  |->  C ) `
 k ) ,  0 )  =  0 )
8079expr 612 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  k  e.  B )  ->  ( -.  k  e.  A  ->  if ( k  e.  B ,  ( ( k  e.  B  |->  C ) `  k ) ,  0 )  =  0 ) )
81 iffalse 3796 . . . . . . . . . . . . . . . 16  |-  ( -.  k  e.  B  ->  if ( k  e.  B ,  ( ( k  e.  B  |->  C ) `
 k ) ,  0 )  =  0 )
8281adantl 463 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  -.  k  e.  B )  ->  if ( k  e.  B ,  ( ( k  e.  B  |->  C ) `
 k ) ,  0 )  =  0 )
8382a1d 25 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  -.  k  e.  B )  ->  ( -.  k  e.  A  ->  if ( k  e.  B ,  ( ( k  e.  B  |->  C ) `  k ) ,  0 )  =  0 ) )
8480, 83pm2.61dan 784 . . . . . . . . . . . . 13  |-  ( ph  ->  ( -.  k  e.  A  ->  if (
k  e.  B , 
( ( k  e.  B  |->  C ) `  k ) ,  0 )  =  0 ) )
8584adantr 462 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( -.  k  e.  A  ->  if ( k  e.  B ,  ( ( k  e.  B  |->  C ) `
 k ) ,  0 )  =  0 ) )
8685imp 429 . . . . . . . . . . 11  |-  ( ( ( ph  /\  k  e.  ( ZZ>= `  M )
)  /\  -.  k  e.  A )  ->  if ( k  e.  B ,  ( ( k  e.  B  |->  C ) `
 k ) ,  0 )  =  0 )
8769, 86eqtr4d 2476 . . . . . . . . . 10  |-  ( ( ( ph  /\  k  e.  ( ZZ>= `  M )
)  /\  -.  k  e.  A )  ->  (
( k  e.  (
ZZ>= `  M )  |->  if ( k  e.  A ,  C ,  0 ) ) `  k )  =  if ( k  e.  B ,  ( ( k  e.  B  |->  C ) `  k
) ,  0 ) )
8868, 87pm2.61dan 784 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( (
k  e.  ( ZZ>= `  M )  |->  if ( k  e.  A ,  C ,  0 ) ) `  k )  =  if ( k  e.  B ,  ( ( k  e.  B  |->  C ) `  k
) ,  0 ) )
8988expcom 435 . . . . . . . 8  |-  ( k  e.  ( ZZ>= `  M
)  ->  ( ph  ->  ( ( k  e.  ( ZZ>= `  M )  |->  if ( k  e.  A ,  C , 
0 ) ) `  k )  =  if ( k  e.  B ,  ( ( k  e.  B  |->  C ) `
 k ) ,  0 ) ) )
907, 54, 59, 89vtoclgaf 3032 . . . . . . 7  |-  ( m  e.  ( ZZ>= `  M
)  ->  ( ph  ->  ( ( k  e.  ( ZZ>= `  M )  |->  if ( k  e.  A ,  C , 
0 ) ) `  m )  =  if ( m  e.  B ,  ( ( k  e.  B  |->  C ) `
 m ) ,  0 ) ) )
9190impcom 430 . . . . . 6  |-  ( (
ph  /\  m  e.  ( ZZ>= `  M )
)  ->  ( (
k  e.  ( ZZ>= `  M )  |->  if ( k  e.  A ,  C ,  0 ) ) `  m )  =  if ( m  e.  B ,  ( ( k  e.  B  |->  C ) `  m
) ,  0 ) )
9291adantlr 709 . . . . 5  |-  ( ( ( ph  /\  M  e.  ZZ )  /\  m  e.  ( ZZ>= `  M )
)  ->  ( (
k  e.  ( ZZ>= `  M )  |->  if ( k  e.  A ,  C ,  0 ) ) `  m )  =  if ( m  e.  B ,  ( ( k  e.  B  |->  C ) `  m
) ,  0 ) )
9343ex 434 . . . . . . . . . 10  |-  ( ph  ->  ( k  e.  A  ->  C  e.  CC ) )
9493adantr 462 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  B )  ->  (
k  e.  A  ->  C  e.  CC )
)
9572, 74syl6eqel 2529 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  ( B  \  A ) )  ->  C  e.  CC )
9671, 95sylan2br 473 . . . . . . . . . 10  |-  ( (
ph  /\  ( k  e.  B  /\  -.  k  e.  A ) )  ->  C  e.  CC )
9796expr 612 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  B )  ->  ( -.  k  e.  A  ->  C  e.  CC ) )
9894, 97pm2.61d 158 . . . . . . . 8  |-  ( (
ph  /\  k  e.  B )  ->  C  e.  CC )
9998, 64fmptd 5864 . . . . . . 7  |-  ( ph  ->  ( k  e.  B  |->  C ) : B --> CC )
10099adantr 462 . . . . . 6  |-  ( (
ph  /\  M  e.  ZZ )  ->  ( k  e.  B  |->  C ) : B --> CC )
101100ffvelrnda 5840 . . . . 5  |-  ( ( ( ph  /\  M  e.  ZZ )  /\  m  e.  B )  ->  (
( k  e.  B  |->  C ) `  m
)  e.  CC )
1021, 2, 48, 92, 101zsum 13191 . . . 4  |-  ( (
ph  /\  M  e.  ZZ )  ->  sum_ m  e.  B  ( (
k  e.  B  |->  C ) `  m )  =  (  ~~>  `  seq M (  +  , 
( k  e.  (
ZZ>= `  M )  |->  if ( k  e.  A ,  C ,  0 ) ) ) ) )
10347, 102eqtr4d 2476 . . 3  |-  ( (
ph  /\  M  e.  ZZ )  ->  sum_ m  e.  A  ( (
k  e.  A  |->  C ) `  m )  =  sum_ m  e.  B  ( ( k  e.  B  |->  C ) `  m ) )
104 sumfc 13182 . . 3  |-  sum_ m  e.  A  ( (
k  e.  A  |->  C ) `  m )  =  sum_ k  e.  A  C
105 sumfc 13182 . . 3  |-  sum_ m  e.  B  ( (
k  e.  B  |->  C ) `  m )  =  sum_ k  e.  B  C
106103, 104, 1053eqtr3g 2496 . 2  |-  ( (
ph  /\  M  e.  ZZ )  ->  sum_ k  e.  A  C  =  sum_ k  e.  B  C
)
1073adantr 462 . . . . . 6  |-  ( (
ph  /\  -.  M  e.  ZZ )  ->  A  C_  B )
108 uzf 10860 . . . . . . . . . . . 12  |-  ZZ>= : ZZ --> ~P ZZ
109108fdmi 5561 . . . . . . . . . . 11  |-  dom  ZZ>=  =  ZZ
110109eleq2i 2505 . . . . . . . . . 10  |-  ( M  e.  dom  ZZ>=  <->  M  e.  ZZ )
111 ndmfv 5711 . . . . . . . . . 10  |-  ( -.  M  e.  dom  ZZ>=  -> 
( ZZ>= `  M )  =  (/) )
112110, 111sylnbir 307 . . . . . . . . 9  |-  ( -.  M  e.  ZZ  ->  (
ZZ>= `  M )  =  (/) )
113112sseq2d 3381 . . . . . . . 8  |-  ( -.  M  e.  ZZ  ->  ( B  C_  ( ZZ>= `  M )  <->  B  C_  (/) ) )
1144, 113syl5ib 219 . . . . . . 7  |-  ( -.  M  e.  ZZ  ->  (
ph  ->  B  C_  (/) ) )
115114impcom 430 . . . . . 6  |-  ( (
ph  /\  -.  M  e.  ZZ )  ->  B  C_  (/) )
116107, 115sstrd 3363 . . . . 5  |-  ( (
ph  /\  -.  M  e.  ZZ )  ->  A  C_  (/) )
117 ss0 3665 . . . . 5  |-  ( A 
C_  (/)  ->  A  =  (/) )
118116, 117syl 16 . . . 4  |-  ( (
ph  /\  -.  M  e.  ZZ )  ->  A  =  (/) )
119 ss0 3665 . . . . 5  |-  ( B 
C_  (/)  ->  B  =  (/) )
120115, 119syl 16 . . . 4  |-  ( (
ph  /\  -.  M  e.  ZZ )  ->  B  =  (/) )
121118, 120eqtr4d 2476 . . 3  |-  ( (
ph  /\  -.  M  e.  ZZ )  ->  A  =  B )
122121sumeq1d 13174 . 2  |-  ( (
ph  /\  -.  M  e.  ZZ )  ->  sum_ k  e.  A  C  =  sum_ k  e.  B  C
)
123106, 122pm2.61dan 784 1  |-  ( ph  -> 
sum_ k  e.  A  C  =  sum_ k  e.  B  C )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 369    = wceq 1364    e. wcel 1761    \ cdif 3322    C_ wss 3325   (/)c0 3634   ifcif 3788   ~Pcpw 3857    e. cmpt 4347    _I cid 4627   dom cdm 4836   -->wf 5411   ` cfv 5415   CCcc 9276   0cc0 9278    + caddc 9281   ZZcz 10642   ZZ>=cuz 10857    seqcseq 11802    ~~> cli 12958   sum_csu 13159
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1713  ax-7 1733  ax-8 1763  ax-9 1765  ax-10 1780  ax-11 1785  ax-12 1797  ax-13 1948  ax-ext 2422  ax-rep 4400  ax-sep 4410  ax-nul 4418  ax-pow 4467  ax-pr 4528  ax-un 6371  ax-inf2 7843  ax-cnex 9334  ax-resscn 9335  ax-1cn 9336  ax-icn 9337  ax-addcl 9338  ax-addrcl 9339  ax-mulcl 9340  ax-mulrcl 9341  ax-mulcom 9342  ax-addass 9343  ax-mulass 9344  ax-distr 9345  ax-i2m1 9346  ax-1ne0 9347  ax-1rid 9348  ax-rnegex 9349  ax-rrecex 9350  ax-cnre 9351  ax-pre-lttri 9352  ax-pre-lttrn 9353  ax-pre-ltadd 9354  ax-pre-mulgt0 9355
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 961  df-3an 962  df-tru 1367  df-fal 1370  df-ex 1592  df-nf 1595  df-sb 1706  df-eu 2261  df-mo 2262  df-clab 2428  df-cleq 2434  df-clel 2437  df-nfc 2566  df-ne 2606  df-nel 2607  df-ral 2718  df-rex 2719  df-reu 2720  df-rmo 2721  df-rab 2722  df-v 2972  df-sbc 3184  df-csb 3286  df-dif 3328  df-un 3330  df-in 3332  df-ss 3339  df-pss 3341  df-nul 3635  df-if 3789  df-pw 3859  df-sn 3875  df-pr 3877  df-tp 3879  df-op 3881  df-uni 4089  df-int 4126  df-iun 4170  df-br 4290  df-opab 4348  df-mpt 4349  df-tr 4383  df-eprel 4628  df-id 4632  df-po 4637  df-so 4638  df-fr 4675  df-se 4676  df-we 4677  df-ord 4718  df-on 4719  df-lim 4720  df-suc 4721  df-xp 4842  df-rel 4843  df-cnv 4844  df-co 4845  df-dm 4846  df-rn 4847  df-res 4848  df-ima 4849  df-iota 5378  df-fun 5417  df-fn 5418  df-f 5419  df-f1 5420  df-fo 5421  df-f1o 5422  df-fv 5423  df-isom 5424  df-riota 6049  df-ov 6093  df-oprab 6094  df-mpt2 6095  df-om 6476  df-1st 6576  df-2nd 6577  df-recs 6828  df-rdg 6862  df-1o 6916  df-oadd 6920  df-er 7097  df-en 7307  df-dom 7308  df-sdom 7309  df-fin 7310  df-oi 7720  df-card 8105  df-pnf 9416  df-mnf 9417  df-xr 9418  df-ltxr 9419  df-le 9420  df-sub 9593  df-neg 9594  df-div 9990  df-nn 10319  df-2 10376  df-n0 10576  df-z 10643  df-uz 10858  df-rp 10988  df-fz 11434  df-fzo 11545  df-seq 11803  df-exp 11862  df-hash 12100  df-cj 12584  df-re 12585  df-im 12586  df-sqr 12720  df-abs 12721  df-clim 12962  df-sum 13160
This theorem is referenced by:  fsumss  13198  sumss2  13199  binomlem  13288  eulerpartlemsv2  26671  eulerpartlemsv3  26674  eulerpartlemv  26677  eulerpartlemb  26681
  Copyright terms: Public domain W3C validator