MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sumsplit Structured version   Unicode version

Theorem sumsplit 13227
Description: Split a sum into two parts. (Contributed by Mario Carneiro, 18-Aug-2013.) (Revised by Mario Carneiro, 23-Apr-2014.)
Hypotheses
Ref Expression
sumsplit.1  |-  Z  =  ( ZZ>= `  M )
sumsplit.2  |-  ( ph  ->  M  e.  ZZ )
sumsplit.3  |-  ( ph  ->  ( A  i^i  B
)  =  (/) )
sumsplit.4  |-  ( ph  ->  ( A  u.  B
)  C_  Z )
sumsplit.5  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  =  if ( k  e.  A ,  C , 
0 ) )
sumsplit.6  |-  ( (
ph  /\  k  e.  Z )  ->  ( G `  k )  =  if ( k  e.  B ,  C , 
0 ) )
sumsplit.7  |-  ( (
ph  /\  k  e.  ( A  u.  B
) )  ->  C  e.  CC )
sumsplit.8  |-  ( ph  ->  seq M (  +  ,  F )  e. 
dom 
~~>  )
sumsplit.9  |-  ( ph  ->  seq M (  +  ,  G )  e. 
dom 
~~>  )
Assertion
Ref Expression
sumsplit  |-  ( ph  -> 
sum_ k  e.  ( A  u.  B ) C  =  ( sum_ k  e.  A  C  +  sum_ k  e.  B  C ) )
Distinct variable groups:    A, k    B, k    k, F    k, G    k, M    ph, k    k, Z
Allowed substitution hint:    C( k)

Proof of Theorem sumsplit
StepHypRef Expression
1 sumsplit.4 . . 3  |-  ( ph  ->  ( A  u.  B
)  C_  Z )
2 sumsplit.7 . . . 4  |-  ( (
ph  /\  k  e.  ( A  u.  B
) )  ->  C  e.  CC )
32ralrimiva 2794 . . 3  |-  ( ph  ->  A. k  e.  ( A  u.  B ) C  e.  CC )
4 sumsplit.1 . . . . . 6  |-  Z  =  ( ZZ>= `  M )
54eqimssi 3405 . . . . 5  |-  Z  C_  ( ZZ>= `  M )
65a1i 11 . . . 4  |-  ( ph  ->  Z  C_  ( ZZ>= `  M ) )
76orcd 392 . . 3  |-  ( ph  ->  ( Z  C_  ( ZZ>=
`  M )  \/  Z  e.  Fin )
)
8 sumss2 13195 . . 3  |-  ( ( ( ( A  u.  B )  C_  Z  /\  A. k  e.  ( A  u.  B ) C  e.  CC )  /\  ( Z  C_  ( ZZ>= `  M )  \/  Z  e.  Fin ) )  ->  sum_ k  e.  ( A  u.  B
) C  =  sum_ k  e.  Z  if ( k  e.  ( A  u.  B ) ,  C ,  0 ) )
91, 3, 7, 8syl21anc 1217 . 2  |-  ( ph  -> 
sum_ k  e.  ( A  u.  B ) C  =  sum_ k  e.  Z  if (
k  e.  ( A  u.  B ) ,  C ,  0 ) )
10 sumsplit.2 . . . 4  |-  ( ph  ->  M  e.  ZZ )
11 sumsplit.5 . . . 4  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  =  if ( k  e.  A ,  C , 
0 ) )
12 iftrue 3792 . . . . . . . 8  |-  ( k  e.  A  ->  if ( k  e.  A ,  C ,  0 )  =  C )
1312adantl 466 . . . . . . 7  |-  ( (
ph  /\  k  e.  A )  ->  if ( k  e.  A ,  C ,  0 )  =  C )
14 elun1 3518 . . . . . . . 8  |-  ( k  e.  A  ->  k  e.  ( A  u.  B
) )
1514, 2sylan2 474 . . . . . . 7  |-  ( (
ph  /\  k  e.  A )  ->  C  e.  CC )
1613, 15eqeltrd 2512 . . . . . 6  |-  ( (
ph  /\  k  e.  A )  ->  if ( k  e.  A ,  C ,  0 )  e.  CC )
17 iffalse 3794 . . . . . . . 8  |-  ( -.  k  e.  A  ->  if ( k  e.  A ,  C ,  0 )  =  0 )
18 0cn 9370 . . . . . . . 8  |-  0  e.  CC
1917, 18syl6eqel 2526 . . . . . . 7  |-  ( -.  k  e.  A  ->  if ( k  e.  A ,  C ,  0 )  e.  CC )
2019adantl 466 . . . . . 6  |-  ( (
ph  /\  -.  k  e.  A )  ->  if ( k  e.  A ,  C ,  0 )  e.  CC )
2116, 20pm2.61dan 789 . . . . 5  |-  ( ph  ->  if ( k  e.  A ,  C , 
0 )  e.  CC )
2221adantr 465 . . . 4  |-  ( (
ph  /\  k  e.  Z )  ->  if ( k  e.  A ,  C ,  0 )  e.  CC )
23 sumsplit.6 . . . 4  |-  ( (
ph  /\  k  e.  Z )  ->  ( G `  k )  =  if ( k  e.  B ,  C , 
0 ) )
24 iftrue 3792 . . . . . . . 8  |-  ( k  e.  B  ->  if ( k  e.  B ,  C ,  0 )  =  C )
2524adantl 466 . . . . . . 7  |-  ( (
ph  /\  k  e.  B )  ->  if ( k  e.  B ,  C ,  0 )  =  C )
26 elun2 3519 . . . . . . . 8  |-  ( k  e.  B  ->  k  e.  ( A  u.  B
) )
2726, 2sylan2 474 . . . . . . 7  |-  ( (
ph  /\  k  e.  B )  ->  C  e.  CC )
2825, 27eqeltrd 2512 . . . . . 6  |-  ( (
ph  /\  k  e.  B )  ->  if ( k  e.  B ,  C ,  0 )  e.  CC )
29 iffalse 3794 . . . . . . . 8  |-  ( -.  k  e.  B  ->  if ( k  e.  B ,  C ,  0 )  =  0 )
3029, 18syl6eqel 2526 . . . . . . 7  |-  ( -.  k  e.  B  ->  if ( k  e.  B ,  C ,  0 )  e.  CC )
3130adantl 466 . . . . . 6  |-  ( (
ph  /\  -.  k  e.  B )  ->  if ( k  e.  B ,  C ,  0 )  e.  CC )
3228, 31pm2.61dan 789 . . . . 5  |-  ( ph  ->  if ( k  e.  B ,  C , 
0 )  e.  CC )
3332adantr 465 . . . 4  |-  ( (
ph  /\  k  e.  Z )  ->  if ( k  e.  B ,  C ,  0 )  e.  CC )
34 sumsplit.8 . . . 4  |-  ( ph  ->  seq M (  +  ,  F )  e. 
dom 
~~>  )
35 sumsplit.9 . . . 4  |-  ( ph  ->  seq M (  +  ,  G )  e. 
dom 
~~>  )
364, 10, 11, 22, 23, 33, 34, 35isumadd 13226 . . 3  |-  ( ph  -> 
sum_ k  e.  Z  ( if ( k  e.  A ,  C , 
0 )  +  if ( k  e.  B ,  C ,  0 ) )  =  ( sum_ k  e.  Z  if ( k  e.  A ,  C ,  0 )  +  sum_ k  e.  Z  if ( k  e.  B ,  C ,  0 ) ) )
3715addid1d 9561 . . . . . 6  |-  ( (
ph  /\  k  e.  A )  ->  ( C  +  0 )  =  C )
38 noel 3636 . . . . . . . . . . 11  |-  -.  k  e.  (/)
39 elin 3534 . . . . . . . . . . . 12  |-  ( k  e.  ( A  i^i  B )  <->  ( k  e.  A  /\  k  e.  B ) )
40 sumsplit.3 . . . . . . . . . . . . 13  |-  ( ph  ->  ( A  i^i  B
)  =  (/) )
4140eleq2d 2505 . . . . . . . . . . . 12  |-  ( ph  ->  ( k  e.  ( A  i^i  B )  <-> 
k  e.  (/) ) )
4239, 41syl5rbbr 260 . . . . . . . . . . 11  |-  ( ph  ->  ( k  e.  (/)  <->  (
k  e.  A  /\  k  e.  B )
) )
4338, 42mtbii 302 . . . . . . . . . 10  |-  ( ph  ->  -.  ( k  e.  A  /\  k  e.  B ) )
44 imnan 422 . . . . . . . . . 10  |-  ( ( k  e.  A  ->  -.  k  e.  B
)  <->  -.  ( k  e.  A  /\  k  e.  B ) )
4543, 44sylibr 212 . . . . . . . . 9  |-  ( ph  ->  ( k  e.  A  ->  -.  k  e.  B
) )
4645imp 429 . . . . . . . 8  |-  ( (
ph  /\  k  e.  A )  ->  -.  k  e.  B )
4746, 29syl 16 . . . . . . 7  |-  ( (
ph  /\  k  e.  A )  ->  if ( k  e.  B ,  C ,  0 )  =  0 )
4813, 47oveq12d 6104 . . . . . 6  |-  ( (
ph  /\  k  e.  A )  ->  ( if ( k  e.  A ,  C ,  0 )  +  if ( k  e.  B ,  C ,  0 ) )  =  ( C  + 
0 ) )
49 iftrue 3792 . . . . . . . 8  |-  ( k  e.  ( A  u.  B )  ->  if ( k  e.  ( A  u.  B ) ,  C ,  0 )  =  C )
5014, 49syl 16 . . . . . . 7  |-  ( k  e.  A  ->  if ( k  e.  ( A  u.  B ) ,  C ,  0 )  =  C )
5150adantl 466 . . . . . 6  |-  ( (
ph  /\  k  e.  A )  ->  if ( k  e.  ( A  u.  B ) ,  C ,  0 )  =  C )
5237, 48, 513eqtr4rd 2481 . . . . 5  |-  ( (
ph  /\  k  e.  A )  ->  if ( k  e.  ( A  u.  B ) ,  C ,  0 )  =  ( if ( k  e.  A ,  C ,  0 )  +  if ( k  e.  B ,  C ,  0 ) ) )
5332addid2d 9562 . . . . . . 7  |-  ( ph  ->  ( 0  +  if ( k  e.  B ,  C ,  0 ) )  =  if ( k  e.  B ,  C ,  0 ) )
5453adantr 465 . . . . . 6  |-  ( (
ph  /\  -.  k  e.  A )  ->  (
0  +  if ( k  e.  B ,  C ,  0 ) )  =  if ( k  e.  B ,  C ,  0 ) )
5517adantl 466 . . . . . . 7  |-  ( (
ph  /\  -.  k  e.  A )  ->  if ( k  e.  A ,  C ,  0 )  =  0 )
5655oveq1d 6101 . . . . . 6  |-  ( (
ph  /\  -.  k  e.  A )  ->  ( if ( k  e.  A ,  C ,  0 )  +  if ( k  e.  B ,  C ,  0 ) )  =  ( 0  +  if ( k  e.  B ,  C , 
0 ) ) )
57 biorf 405 . . . . . . . . 9  |-  ( -.  k  e.  A  -> 
( k  e.  B  <->  ( k  e.  A  \/  k  e.  B )
) )
58 elun 3492 . . . . . . . . 9  |-  ( k  e.  ( A  u.  B )  <->  ( k  e.  A  \/  k  e.  B ) )
5957, 58syl6rbbr 264 . . . . . . . 8  |-  ( -.  k  e.  A  -> 
( k  e.  ( A  u.  B )  <-> 
k  e.  B ) )
6059adantl 466 . . . . . . 7  |-  ( (
ph  /\  -.  k  e.  A )  ->  (
k  e.  ( A  u.  B )  <->  k  e.  B ) )
6160ifbid 3806 . . . . . 6  |-  ( (
ph  /\  -.  k  e.  A )  ->  if ( k  e.  ( A  u.  B ) ,  C ,  0 )  =  if ( k  e.  B ,  C ,  0 ) )
6254, 56, 613eqtr4rd 2481 . . . . 5  |-  ( (
ph  /\  -.  k  e.  A )  ->  if ( k  e.  ( A  u.  B ) ,  C ,  0 )  =  ( if ( k  e.  A ,  C ,  0 )  +  if ( k  e.  B ,  C ,  0 ) ) )
6352, 62pm2.61dan 789 . . . 4  |-  ( ph  ->  if ( k  e.  ( A  u.  B
) ,  C , 
0 )  =  ( if ( k  e.  A ,  C , 
0 )  +  if ( k  e.  B ,  C ,  0 ) ) )
6463sumeq2sdv 13173 . . 3  |-  ( ph  -> 
sum_ k  e.  Z  if ( k  e.  ( A  u.  B ) ,  C ,  0 )  =  sum_ k  e.  Z  ( if ( k  e.  A ,  C ,  0 )  +  if ( k  e.  B ,  C ,  0 ) ) )
651unssad 3528 . . . . 5  |-  ( ph  ->  A  C_  Z )
6615ralrimiva 2794 . . . . 5  |-  ( ph  ->  A. k  e.  A  C  e.  CC )
67 sumss2 13195 . . . . 5  |-  ( ( ( A  C_  Z  /\  A. k  e.  A  C  e.  CC )  /\  ( Z  C_  ( ZZ>=
`  M )  \/  Z  e.  Fin )
)  ->  sum_ k  e.  A  C  =  sum_ k  e.  Z  if ( k  e.  A ,  C ,  0 ) )
6865, 66, 7, 67syl21anc 1217 . . . 4  |-  ( ph  -> 
sum_ k  e.  A  C  =  sum_ k  e.  Z  if ( k  e.  A ,  C ,  0 ) )
691unssbd 3529 . . . . 5  |-  ( ph  ->  B  C_  Z )
7027ralrimiva 2794 . . . . 5  |-  ( ph  ->  A. k  e.  B  C  e.  CC )
71 sumss2 13195 . . . . 5  |-  ( ( ( B  C_  Z  /\  A. k  e.  B  C  e.  CC )  /\  ( Z  C_  ( ZZ>=
`  M )  \/  Z  e.  Fin )
)  ->  sum_ k  e.  B  C  =  sum_ k  e.  Z  if ( k  e.  B ,  C ,  0 ) )
7269, 70, 7, 71syl21anc 1217 . . . 4  |-  ( ph  -> 
sum_ k  e.  B  C  =  sum_ k  e.  Z  if ( k  e.  B ,  C ,  0 ) )
7368, 72oveq12d 6104 . . 3  |-  ( ph  ->  ( sum_ k  e.  A  C  +  sum_ k  e.  B  C )  =  ( sum_ k  e.  Z  if ( k  e.  A ,  C ,  0 )  +  sum_ k  e.  Z  if ( k  e.  B ,  C ,  0 ) ) )
7436, 64, 733eqtr4rd 2481 . 2  |-  ( ph  ->  ( sum_ k  e.  A  C  +  sum_ k  e.  B  C )  = 
sum_ k  e.  Z  if ( k  e.  ( A  u.  B ) ,  C ,  0 ) )
759, 74eqtr4d 2473 1  |-  ( ph  -> 
sum_ k  e.  ( A  u.  B ) C  =  ( sum_ k  e.  A  C  +  sum_ k  e.  B  C ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    \/ wo 368    /\ wa 369    = wceq 1369    e. wcel 1756   A.wral 2710    u. cun 3321    i^i cin 3322    C_ wss 3323   (/)c0 3632   ifcif 3786   dom cdm 4835   ` cfv 5413  (class class class)co 6086   Fincfn 7302   CCcc 9272   0cc0 9274    + caddc 9277   ZZcz 10638   ZZ>=cuz 10853    seqcseq 11798    ~~> cli 12954   sum_csu 13155
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2419  ax-rep 4398  ax-sep 4408  ax-nul 4416  ax-pow 4465  ax-pr 4526  ax-un 6367  ax-inf2 7839  ax-cnex 9330  ax-resscn 9331  ax-1cn 9332  ax-icn 9333  ax-addcl 9334  ax-addrcl 9335  ax-mulcl 9336  ax-mulrcl 9337  ax-mulcom 9338  ax-addass 9339  ax-mulass 9340  ax-distr 9341  ax-i2m1 9342  ax-1ne0 9343  ax-1rid 9344  ax-rnegex 9345  ax-rrecex 9346  ax-cnre 9347  ax-pre-lttri 9348  ax-pre-lttrn 9349  ax-pre-ltadd 9350  ax-pre-mulgt0 9351  ax-pre-sup 9352
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-fal 1375  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2256  df-mo 2257  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-nel 2604  df-ral 2715  df-rex 2716  df-reu 2717  df-rmo 2718  df-rab 2719  df-v 2969  df-sbc 3182  df-csb 3284  df-dif 3326  df-un 3328  df-in 3330  df-ss 3337  df-pss 3339  df-nul 3633  df-if 3787  df-pw 3857  df-sn 3873  df-pr 3875  df-tp 3877  df-op 3879  df-uni 4087  df-int 4124  df-iun 4168  df-br 4288  df-opab 4346  df-mpt 4347  df-tr 4381  df-eprel 4627  df-id 4631  df-po 4636  df-so 4637  df-fr 4674  df-se 4675  df-we 4676  df-ord 4717  df-on 4718  df-lim 4719  df-suc 4720  df-xp 4841  df-rel 4842  df-cnv 4843  df-co 4844  df-dm 4845  df-rn 4846  df-res 4847  df-ima 4848  df-iota 5376  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-isom 5422  df-riota 6047  df-ov 6089  df-oprab 6090  df-mpt2 6091  df-om 6472  df-1st 6572  df-2nd 6573  df-recs 6824  df-rdg 6858  df-1o 6912  df-oadd 6916  df-er 7093  df-en 7303  df-dom 7304  df-sdom 7305  df-fin 7306  df-sup 7683  df-oi 7716  df-card 8101  df-pnf 9412  df-mnf 9413  df-xr 9414  df-ltxr 9415  df-le 9416  df-sub 9589  df-neg 9590  df-div 9986  df-nn 10315  df-2 10372  df-3 10373  df-n0 10572  df-z 10639  df-uz 10854  df-rp 10984  df-fz 11430  df-fzo 11541  df-seq 11799  df-exp 11858  df-hash 12096  df-cj 12580  df-re 12581  df-im 12582  df-sqr 12716  df-abs 12717  df-clim 12958  df-sum 13156
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator