MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sumrblem Structured version   Unicode version

Theorem sumrblem 13513
Description: Lemma for sumrb 13515. (Contributed by Mario Carneiro, 12-Aug-2013.)
Hypotheses
Ref Expression
summo.1  |-  F  =  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  0 ) )
summo.2  |-  ( (
ph  /\  k  e.  A )  ->  B  e.  CC )
sumrb.3  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
Assertion
Ref Expression
sumrblem  |-  ( (
ph  /\  A  C_  ( ZZ>=
`  N ) )  ->  (  seq M
(  +  ,  F
)  |`  ( ZZ>= `  N
) )  =  seq N (  +  ,  F ) )
Distinct variable groups:    A, k    k, F    k, N    ph, k    k, M
Allowed substitution hint:    B( k)

Proof of Theorem sumrblem
Dummy variable  n is distinct from all other variables.
StepHypRef Expression
1 addid2 9774 . . 3  |-  ( n  e.  CC  ->  (
0  +  n )  =  n )
21adantl 466 . 2  |-  ( ( ( ph  /\  A  C_  ( ZZ>= `  N )
)  /\  n  e.  CC )  ->  ( 0  +  n )  =  n )
3 0cnd 9601 . 2  |-  ( (
ph  /\  A  C_  ( ZZ>=
`  N ) )  ->  0  e.  CC )
4 sumrb.3 . . 3  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
54adantr 465 . 2  |-  ( (
ph  /\  A  C_  ( ZZ>=
`  N ) )  ->  N  e.  (
ZZ>= `  M ) )
6 iftrue 3951 . . . . . . . . . 10  |-  ( k  e.  A  ->  if ( k  e.  A ,  B ,  0 )  =  B )
76adantl 466 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  A )  ->  if ( k  e.  A ,  B ,  0 )  =  B )
8 summo.2 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  A )  ->  B  e.  CC )
97, 8eqeltrd 2555 . . . . . . . 8  |-  ( (
ph  /\  k  e.  A )  ->  if ( k  e.  A ,  B ,  0 )  e.  CC )
109ex 434 . . . . . . 7  |-  ( ph  ->  ( k  e.  A  ->  if ( k  e.  A ,  B , 
0 )  e.  CC ) )
11 iffalse 3954 . . . . . . . 8  |-  ( -.  k  e.  A  ->  if ( k  e.  A ,  B ,  0 )  =  0 )
12 0cn 9600 . . . . . . . 8  |-  0  e.  CC
1311, 12syl6eqel 2563 . . . . . . 7  |-  ( -.  k  e.  A  ->  if ( k  e.  A ,  B ,  0 )  e.  CC )
1410, 13pm2.61d1 159 . . . . . 6  |-  ( ph  ->  if ( k  e.  A ,  B , 
0 )  e.  CC )
1514adantr 465 . . . . 5  |-  ( (
ph  /\  k  e.  ZZ )  ->  if ( k  e.  A ,  B ,  0 )  e.  CC )
16 summo.1 . . . . 5  |-  F  =  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  0 ) )
1715, 16fmptd 6056 . . . 4  |-  ( ph  ->  F : ZZ --> CC )
1817adantr 465 . . 3  |-  ( (
ph  /\  A  C_  ( ZZ>=
`  N ) )  ->  F : ZZ --> CC )
19 eluzelz 11103 . . . . 5  |-  ( N  e.  ( ZZ>= `  M
)  ->  N  e.  ZZ )
204, 19syl 16 . . . 4  |-  ( ph  ->  N  e.  ZZ )
2120adantr 465 . . 3  |-  ( (
ph  /\  A  C_  ( ZZ>=
`  N ) )  ->  N  e.  ZZ )
2218, 21ffvelrnd 6033 . 2  |-  ( (
ph  /\  A  C_  ( ZZ>=
`  N ) )  ->  ( F `  N )  e.  CC )
23 elfzelz 11700 . . . . 5  |-  ( n  e.  ( M ... ( N  -  1
) )  ->  n  e.  ZZ )
2423adantl 466 . . . 4  |-  ( ( ( ph  /\  A  C_  ( ZZ>= `  N )
)  /\  n  e.  ( M ... ( N  -  1 ) ) )  ->  n  e.  ZZ )
25 simplr 754 . . . . . 6  |-  ( ( ( ph  /\  A  C_  ( ZZ>= `  N )
)  /\  n  e.  ( M ... ( N  -  1 ) ) )  ->  A  C_  ( ZZ>=
`  N ) )
2620zcnd 10979 . . . . . . . . 9  |-  ( ph  ->  N  e.  CC )
2726ad2antrr 725 . . . . . . . 8  |-  ( ( ( ph  /\  A  C_  ( ZZ>= `  N )
)  /\  n  e.  ( M ... ( N  -  1 ) ) )  ->  N  e.  CC )
28 ax-1cn 9562 . . . . . . . 8  |-  1  e.  CC
29 npcan 9841 . . . . . . . 8  |-  ( ( N  e.  CC  /\  1  e.  CC )  ->  ( ( N  - 
1 )  +  1 )  =  N )
3027, 28, 29sylancl 662 . . . . . . 7  |-  ( ( ( ph  /\  A  C_  ( ZZ>= `  N )
)  /\  n  e.  ( M ... ( N  -  1 ) ) )  ->  ( ( N  -  1 )  +  1 )  =  N )
3130fveq2d 5876 . . . . . 6  |-  ( ( ( ph  /\  A  C_  ( ZZ>= `  N )
)  /\  n  e.  ( M ... ( N  -  1 ) ) )  ->  ( ZZ>= `  ( ( N  - 
1 )  +  1 ) )  =  (
ZZ>= `  N ) )
3225, 31sseqtr4d 3546 . . . . 5  |-  ( ( ( ph  /\  A  C_  ( ZZ>= `  N )
)  /\  n  e.  ( M ... ( N  -  1 ) ) )  ->  A  C_  ( ZZ>=
`  ( ( N  -  1 )  +  1 ) ) )
33 fznuz 11772 . . . . . 6  |-  ( n  e.  ( M ... ( N  -  1
) )  ->  -.  n  e.  ( ZZ>= `  ( ( N  - 
1 )  +  1 ) ) )
3433adantl 466 . . . . 5  |-  ( ( ( ph  /\  A  C_  ( ZZ>= `  N )
)  /\  n  e.  ( M ... ( N  -  1 ) ) )  ->  -.  n  e.  ( ZZ>= `  ( ( N  -  1 )  +  1 ) ) )
3532, 34ssneldd 3512 . . . 4  |-  ( ( ( ph  /\  A  C_  ( ZZ>= `  N )
)  /\  n  e.  ( M ... ( N  -  1 ) ) )  ->  -.  n  e.  A )
3624, 35eldifd 3492 . . 3  |-  ( ( ( ph  /\  A  C_  ( ZZ>= `  N )
)  /\  n  e.  ( M ... ( N  -  1 ) ) )  ->  n  e.  ( ZZ  \  A ) )
37 fveq2 5872 . . . . 5  |-  ( k  =  n  ->  ( F `  k )  =  ( F `  n ) )
3837eqeq1d 2469 . . . 4  |-  ( k  =  n  ->  (
( F `  k
)  =  0  <->  ( F `  n )  =  0 ) )
39 eldifi 3631 . . . . . 6  |-  ( k  e.  ( ZZ  \  A )  ->  k  e.  ZZ )
40 eldifn 3632 . . . . . . . 8  |-  ( k  e.  ( ZZ  \  A )  ->  -.  k  e.  A )
4140, 11syl 16 . . . . . . 7  |-  ( k  e.  ( ZZ  \  A )  ->  if ( k  e.  A ,  B ,  0 )  =  0 )
4241, 12syl6eqel 2563 . . . . . 6  |-  ( k  e.  ( ZZ  \  A )  ->  if ( k  e.  A ,  B ,  0 )  e.  CC )
4316fvmpt2 5964 . . . . . 6  |-  ( ( k  e.  ZZ  /\  if ( k  e.  A ,  B ,  0 )  e.  CC )  -> 
( F `  k
)  =  if ( k  e.  A ,  B ,  0 ) )
4439, 42, 43syl2anc 661 . . . . 5  |-  ( k  e.  ( ZZ  \  A )  ->  ( F `  k )  =  if ( k  e.  A ,  B , 
0 ) )
4544, 41eqtrd 2508 . . . 4  |-  ( k  e.  ( ZZ  \  A )  ->  ( F `  k )  =  0 )
4638, 45vtoclga 3182 . . 3  |-  ( n  e.  ( ZZ  \  A )  ->  ( F `  n )  =  0 )
4736, 46syl 16 . 2  |-  ( ( ( ph  /\  A  C_  ( ZZ>= `  N )
)  /\  n  e.  ( M ... ( N  -  1 ) ) )  ->  ( F `  n )  =  0 )
482, 3, 5, 22, 47seqid 12132 1  |-  ( (
ph  /\  A  C_  ( ZZ>=
`  N ) )  ->  (  seq M
(  +  ,  F
)  |`  ( ZZ>= `  N
) )  =  seq N (  +  ,  F ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 369    = wceq 1379    e. wcel 1767    \ cdif 3478    C_ wss 3481   ifcif 3945    |-> cmpt 4511    |` cres 5007   -->wf 5590   ` cfv 5594  (class class class)co 6295   CCcc 9502   0cc0 9504   1c1 9505    + caddc 9507    - cmin 9817   ZZcz 10876   ZZ>=cuz 11094   ...cfz 11684    seqcseq 12087
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4574  ax-nul 4582  ax-pow 4631  ax-pr 4692  ax-un 6587  ax-cnex 9560  ax-resscn 9561  ax-1cn 9562  ax-icn 9563  ax-addcl 9564  ax-addrcl 9565  ax-mulcl 9566  ax-mulrcl 9567  ax-mulcom 9568  ax-addass 9569  ax-mulass 9570  ax-distr 9571  ax-i2m1 9572  ax-1ne0 9573  ax-1rid 9574  ax-rnegex 9575  ax-rrecex 9576  ax-cnre 9577  ax-pre-lttri 9578  ax-pre-lttrn 9579  ax-pre-ltadd 9580  ax-pre-mulgt0 9581
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2822  df-rex 2823  df-reu 2824  df-rab 2826  df-v 3120  df-sbc 3337  df-csb 3441  df-dif 3484  df-un 3486  df-in 3488  df-ss 3495  df-pss 3497  df-nul 3791  df-if 3946  df-pw 4018  df-sn 4034  df-pr 4036  df-tp 4038  df-op 4040  df-uni 4252  df-iun 4333  df-br 4454  df-opab 4512  df-mpt 4513  df-tr 4547  df-eprel 4797  df-id 4801  df-po 4806  df-so 4807  df-fr 4844  df-we 4846  df-ord 4887  df-on 4888  df-lim 4889  df-suc 4890  df-xp 5011  df-rel 5012  df-cnv 5013  df-co 5014  df-dm 5015  df-rn 5016  df-res 5017  df-ima 5018  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-riota 6256  df-ov 6298  df-oprab 6299  df-mpt2 6300  df-om 6696  df-1st 6795  df-2nd 6796  df-recs 7054  df-rdg 7088  df-er 7323  df-en 7529  df-dom 7530  df-sdom 7531  df-pnf 9642  df-mnf 9643  df-xr 9644  df-ltxr 9645  df-le 9646  df-sub 9819  df-neg 9820  df-nn 10549  df-n0 10808  df-z 10877  df-uz 11095  df-fz 11685  df-seq 12088
This theorem is referenced by:  sumrb  13515
  Copyright terms: Public domain W3C validator