Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sumpr Structured version   Unicode version

Theorem sumpr 27428
Description: A sum over a pair is the sum of the elements. (Contributed by Thierry Arnoux, 12-Dec-2016.)
Hypotheses
Ref Expression
sumpr.1  |-  ( k  =  A  ->  C  =  D )
sumpr.2  |-  ( k  =  B  ->  C  =  E )
sumpr.3  |-  ( ph  ->  ( D  e.  CC  /\  E  e.  CC ) )
sumpr.4  |-  ( ph  ->  ( A  e.  V  /\  B  e.  W
) )
sumpr.5  |-  ( ph  ->  A  =/=  B )
Assertion
Ref Expression
sumpr  |-  ( ph  -> 
sum_ k  e.  { A ,  B } C  =  ( D  +  E ) )
Distinct variable groups:    A, k    B, k    D, k    k, E    ph, k    k, V    k, W
Allowed substitution hint:    C( k)

Proof of Theorem sumpr
StepHypRef Expression
1 sumpr.5 . . . 4  |-  ( ph  ->  A  =/=  B )
2 disjsn2 4089 . . . 4  |-  ( A  =/=  B  ->  ( { A }  i^i  { B } )  =  (/) )
31, 2syl 16 . . 3  |-  ( ph  ->  ( { A }  i^i  { B } )  =  (/) )
4 df-pr 4030 . . . 4  |-  { A ,  B }  =  ( { A }  u.  { B } )
54a1i 11 . . 3  |-  ( ph  ->  { A ,  B }  =  ( { A }  u.  { B } ) )
6 prfi 7791 . . . 4  |-  { A ,  B }  e.  Fin
76a1i 11 . . 3  |-  ( ph  ->  { A ,  B }  e.  Fin )
8 sumpr.3 . . . . 5  |-  ( ph  ->  ( D  e.  CC  /\  E  e.  CC ) )
9 sumpr.4 . . . . . 6  |-  ( ph  ->  ( A  e.  V  /\  B  e.  W
) )
10 sumpr.1 . . . . . . . 8  |-  ( k  =  A  ->  C  =  D )
1110eleq1d 2536 . . . . . . 7  |-  ( k  =  A  ->  ( C  e.  CC  <->  D  e.  CC ) )
12 sumpr.2 . . . . . . . 8  |-  ( k  =  B  ->  C  =  E )
1312eleq1d 2536 . . . . . . 7  |-  ( k  =  B  ->  ( C  e.  CC  <->  E  e.  CC ) )
1411, 13ralprg 4076 . . . . . 6  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( A. k  e. 
{ A ,  B } C  e.  CC  <->  ( D  e.  CC  /\  E  e.  CC )
) )
159, 14syl 16 . . . . 5  |-  ( ph  ->  ( A. k  e. 
{ A ,  B } C  e.  CC  <->  ( D  e.  CC  /\  E  e.  CC )
) )
168, 15mpbird 232 . . . 4  |-  ( ph  ->  A. k  e.  { A ,  B } C  e.  CC )
1716r19.21bi 2833 . . 3  |-  ( (
ph  /\  k  e.  { A ,  B }
)  ->  C  e.  CC )
183, 5, 7, 17fsumsplit 13518 . 2  |-  ( ph  -> 
sum_ k  e.  { A ,  B } C  =  ( sum_ k  e.  { A } C  +  sum_ k  e.  { B } C
) )
199simpld 459 . . . 4  |-  ( ph  ->  A  e.  V )
208simpld 459 . . . 4  |-  ( ph  ->  D  e.  CC )
2110sumsn 13519 . . . 4  |-  ( ( A  e.  V  /\  D  e.  CC )  -> 
sum_ k  e.  { A } C  =  D )
2219, 20, 21syl2anc 661 . . 3  |-  ( ph  -> 
sum_ k  e.  { A } C  =  D )
239simprd 463 . . . 4  |-  ( ph  ->  B  e.  W )
248simprd 463 . . . 4  |-  ( ph  ->  E  e.  CC )
2512sumsn 13519 . . . 4  |-  ( ( B  e.  W  /\  E  e.  CC )  -> 
sum_ k  e.  { B } C  =  E )
2623, 24, 25syl2anc 661 . . 3  |-  ( ph  -> 
sum_ k  e.  { B } C  =  E )
2722, 26oveq12d 6300 . 2  |-  ( ph  ->  ( sum_ k  e.  { A } C  +  sum_ k  e.  { B } C )  =  ( D  +  E ) )
2818, 27eqtrd 2508 1  |-  ( ph  -> 
sum_ k  e.  { A ,  B } C  =  ( D  +  E ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1379    e. wcel 1767    =/= wne 2662   A.wral 2814    u. cun 3474    i^i cin 3475   (/)c0 3785   {csn 4027   {cpr 4029  (class class class)co 6282   Fincfn 7513   CCcc 9486    + caddc 9491   sum_csu 13464
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4558  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6574  ax-inf2 8054  ax-cnex 9544  ax-resscn 9545  ax-1cn 9546  ax-icn 9547  ax-addcl 9548  ax-addrcl 9549  ax-mulcl 9550  ax-mulrcl 9551  ax-mulcom 9552  ax-addass 9553  ax-mulass 9554  ax-distr 9555  ax-i2m1 9556  ax-1ne0 9557  ax-1rid 9558  ax-rnegex 9559  ax-rrecex 9560  ax-cnre 9561  ax-pre-lttri 9562  ax-pre-lttrn 9563  ax-pre-ltadd 9564  ax-pre-mulgt0 9565  ax-pre-sup 9566
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-fal 1385  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2819  df-rex 2820  df-reu 2821  df-rmo 2822  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-pss 3492  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-tp 4032  df-op 4034  df-uni 4246  df-int 4283  df-iun 4327  df-br 4448  df-opab 4506  df-mpt 4507  df-tr 4541  df-eprel 4791  df-id 4795  df-po 4800  df-so 4801  df-fr 4838  df-se 4839  df-we 4840  df-ord 4881  df-on 4882  df-lim 4883  df-suc 4884  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5549  df-fun 5588  df-fn 5589  df-f 5590  df-f1 5591  df-fo 5592  df-f1o 5593  df-fv 5594  df-isom 5595  df-riota 6243  df-ov 6285  df-oprab 6286  df-mpt2 6287  df-om 6679  df-1st 6781  df-2nd 6782  df-recs 7039  df-rdg 7073  df-1o 7127  df-oadd 7131  df-er 7308  df-en 7514  df-dom 7515  df-sdom 7516  df-fin 7517  df-sup 7897  df-oi 7931  df-card 8316  df-pnf 9626  df-mnf 9627  df-xr 9628  df-ltxr 9629  df-le 9630  df-sub 9803  df-neg 9804  df-div 10203  df-nn 10533  df-2 10590  df-3 10591  df-n0 10792  df-z 10861  df-uz 11079  df-rp 11217  df-fz 11669  df-fzo 11789  df-seq 12071  df-exp 12130  df-hash 12368  df-cj 12889  df-re 12890  df-im 12891  df-sqrt 13025  df-abs 13026  df-clim 13267  df-sum 13465
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator