MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  summolem3 Structured version   Unicode version

Theorem summolem3 13175
Description: Lemma for summo 13178. (Contributed by Mario Carneiro, 29-Mar-2014.)
Hypotheses
Ref Expression
summo.1  |-  F  =  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  0 ) )
summo.2  |-  ( (
ph  /\  k  e.  A )  ->  B  e.  CC )
summo.3  |-  G  =  ( n  e.  NN  |->  [_ ( f `  n
)  /  k ]_ B )
summolem3.4  |-  H  =  ( n  e.  NN  |->  [_ ( K `  n
)  /  k ]_ B )
summolem3.5  |-  ( ph  ->  ( M  e.  NN  /\  N  e.  NN ) )
summolem3.6  |-  ( ph  ->  f : ( 1 ... M ) -1-1-onto-> A )
summolem3.7  |-  ( ph  ->  K : ( 1 ... N ) -1-1-onto-> A )
Assertion
Ref Expression
summolem3  |-  ( ph  ->  (  seq 1 (  +  ,  G ) `
 M )  =  (  seq 1 (  +  ,  H ) `
 N ) )
Distinct variable groups:    f, k, n, A    f, F, k, n    k, G, n   
k, K, n    k, N, n    ph, k, n    B, f, n    k, M, n
Allowed substitution hints:    ph( f)    B( k)    G( f)    H( f, k, n)    K( f)    M( f)    N( f)

Proof of Theorem summolem3
Dummy variables  i 
j  m  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 addcl 9352 . . . 4  |-  ( ( m  e.  CC  /\  j  e.  CC )  ->  ( m  +  j )  e.  CC )
21adantl 463 . . 3  |-  ( (
ph  /\  ( m  e.  CC  /\  j  e.  CC ) )  -> 
( m  +  j )  e.  CC )
3 addcom 9543 . . . 4  |-  ( ( m  e.  CC  /\  j  e.  CC )  ->  ( m  +  j )  =  ( j  +  m ) )
43adantl 463 . . 3  |-  ( (
ph  /\  ( m  e.  CC  /\  j  e.  CC ) )  -> 
( m  +  j )  =  ( j  +  m ) )
5 addass 9357 . . . 4  |-  ( ( m  e.  CC  /\  j  e.  CC  /\  y  e.  CC )  ->  (
( m  +  j )  +  y )  =  ( m  +  ( j  +  y ) ) )
65adantl 463 . . 3  |-  ( (
ph  /\  ( m  e.  CC  /\  j  e.  CC  /\  y  e.  CC ) )  -> 
( ( m  +  j )  +  y )  =  ( m  +  ( j  +  y ) ) )
7 summolem3.5 . . . . 5  |-  ( ph  ->  ( M  e.  NN  /\  N  e.  NN ) )
87simpld 456 . . . 4  |-  ( ph  ->  M  e.  NN )
9 nnuz 10884 . . . 4  |-  NN  =  ( ZZ>= `  1 )
108, 9syl6eleq 2523 . . 3  |-  ( ph  ->  M  e.  ( ZZ>= ` 
1 ) )
11 ssid 3363 . . . 4  |-  CC  C_  CC
1211a1i 11 . . 3  |-  ( ph  ->  CC  C_  CC )
13 summolem3.6 . . . . . 6  |-  ( ph  ->  f : ( 1 ... M ) -1-1-onto-> A )
14 f1ocnv 5641 . . . . . 6  |-  ( f : ( 1 ... M ) -1-1-onto-> A  ->  `' f : A -1-1-onto-> ( 1 ... M
) )
1513, 14syl 16 . . . . 5  |-  ( ph  ->  `' f : A -1-1-onto-> (
1 ... M ) )
16 summolem3.7 . . . . 5  |-  ( ph  ->  K : ( 1 ... N ) -1-1-onto-> A )
17 f1oco 5651 . . . . 5  |-  ( ( `' f : A -1-1-onto-> (
1 ... M )  /\  K : ( 1 ... N ) -1-1-onto-> A )  ->  ( `' f  o.  K
) : ( 1 ... N ) -1-1-onto-> ( 1 ... M ) )
1815, 16, 17syl2anc 654 . . . 4  |-  ( ph  ->  ( `' f  o.  K ) : ( 1 ... N ) -1-1-onto-> ( 1 ... M ) )
19 ovex 6105 . . . . . . . . . 10  |-  ( 1 ... N )  e. 
_V
2019f1oen 7318 . . . . . . . . 9  |-  ( ( `' f  o.  K
) : ( 1 ... N ) -1-1-onto-> ( 1 ... M )  -> 
( 1 ... N
)  ~~  ( 1 ... M ) )
2118, 20syl 16 . . . . . . . 8  |-  ( ph  ->  ( 1 ... N
)  ~~  ( 1 ... M ) )
22 fzfi 11778 . . . . . . . . 9  |-  ( 1 ... N )  e. 
Fin
23 fzfi 11778 . . . . . . . . 9  |-  ( 1 ... M )  e. 
Fin
24 hashen 12102 . . . . . . . . 9  |-  ( ( ( 1 ... N
)  e.  Fin  /\  ( 1 ... M
)  e.  Fin )  ->  ( ( # `  (
1 ... N ) )  =  ( # `  (
1 ... M ) )  <-> 
( 1 ... N
)  ~~  ( 1 ... M ) ) )
2522, 23, 24mp2an 665 . . . . . . . 8  |-  ( (
# `  ( 1 ... N ) )  =  ( # `  (
1 ... M ) )  <-> 
( 1 ... N
)  ~~  ( 1 ... M ) )
2621, 25sylibr 212 . . . . . . 7  |-  ( ph  ->  ( # `  (
1 ... N ) )  =  ( # `  (
1 ... M ) ) )
277simprd 460 . . . . . . . 8  |-  ( ph  ->  N  e.  NN )
28 nnnn0 10574 . . . . . . . 8  |-  ( N  e.  NN  ->  N  e.  NN0 )
29 hashfz1 12101 . . . . . . . 8  |-  ( N  e.  NN0  ->  ( # `  ( 1 ... N
) )  =  N )
3027, 28, 293syl 20 . . . . . . 7  |-  ( ph  ->  ( # `  (
1 ... N ) )  =  N )
31 nnnn0 10574 . . . . . . . 8  |-  ( M  e.  NN  ->  M  e.  NN0 )
32 hashfz1 12101 . . . . . . . 8  |-  ( M  e.  NN0  ->  ( # `  ( 1 ... M
) )  =  M )
338, 31, 323syl 20 . . . . . . 7  |-  ( ph  ->  ( # `  (
1 ... M ) )  =  M )
3426, 30, 333eqtr3rd 2474 . . . . . 6  |-  ( ph  ->  M  =  N )
3534oveq2d 6096 . . . . 5  |-  ( ph  ->  ( 1 ... M
)  =  ( 1 ... N ) )
36 f1oeq2 5621 . . . . 5  |-  ( ( 1 ... M )  =  ( 1 ... N )  ->  (
( `' f  o.  K ) : ( 1 ... M ) -1-1-onto-> ( 1 ... M )  <-> 
( `' f  o.  K ) : ( 1 ... N ) -1-1-onto-> ( 1 ... M ) ) )
3735, 36syl 16 . . . 4  |-  ( ph  ->  ( ( `' f  o.  K ) : ( 1 ... M
)
-1-1-onto-> ( 1 ... M
)  <->  ( `' f  o.  K ) : ( 1 ... N
)
-1-1-onto-> ( 1 ... M
) ) )
3818, 37mpbird 232 . . 3  |-  ( ph  ->  ( `' f  o.  K ) : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) )
39 elfznn 11465 . . . . . 6  |-  ( m  e.  ( 1 ... M )  ->  m  e.  NN )
4039adantl 463 . . . . 5  |-  ( (
ph  /\  m  e.  ( 1 ... M
) )  ->  m  e.  NN )
41 f1of 5629 . . . . . . . 8  |-  ( f : ( 1 ... M ) -1-1-onto-> A  ->  f :
( 1 ... M
) --> A )
4213, 41syl 16 . . . . . . 7  |-  ( ph  ->  f : ( 1 ... M ) --> A )
4342ffvelrnda 5831 . . . . . 6  |-  ( (
ph  /\  m  e.  ( 1 ... M
) )  ->  (
f `  m )  e.  A )
44 summo.2 . . . . . . . 8  |-  ( (
ph  /\  k  e.  A )  ->  B  e.  CC )
4544ralrimiva 2789 . . . . . . 7  |-  ( ph  ->  A. k  e.  A  B  e.  CC )
4645adantr 462 . . . . . 6  |-  ( (
ph  /\  m  e.  ( 1 ... M
) )  ->  A. k  e.  A  B  e.  CC )
47 nfcsb1v 3292 . . . . . . . 8  |-  F/_ k [_ ( f `  m
)  /  k ]_ B
4847nfel1 2579 . . . . . . 7  |-  F/ k
[_ ( f `  m )  /  k ]_ B  e.  CC
49 csbeq1a 3285 . . . . . . . 8  |-  ( k  =  ( f `  m )  ->  B  =  [_ ( f `  m )  /  k ]_ B )
5049eleq1d 2499 . . . . . . 7  |-  ( k  =  ( f `  m )  ->  ( B  e.  CC  <->  [_ ( f `
 m )  / 
k ]_ B  e.  CC ) )
5148, 50rspc 3056 . . . . . 6  |-  ( ( f `  m )  e.  A  ->  ( A. k  e.  A  B  e.  CC  ->  [_ ( f `  m
)  /  k ]_ B  e.  CC )
)
5243, 46, 51sylc 60 . . . . 5  |-  ( (
ph  /\  m  e.  ( 1 ... M
) )  ->  [_ (
f `  m )  /  k ]_ B  e.  CC )
53 fveq2 5679 . . . . . . 7  |-  ( n  =  m  ->  (
f `  n )  =  ( f `  m ) )
5453csbeq1d 3283 . . . . . 6  |-  ( n  =  m  ->  [_ (
f `  n )  /  k ]_ B  =  [_ ( f `  m )  /  k ]_ B )
55 summo.3 . . . . . 6  |-  G  =  ( n  e.  NN  |->  [_ ( f `  n
)  /  k ]_ B )
5654, 55fvmptg 5760 . . . . 5  |-  ( ( m  e.  NN  /\  [_ ( f `  m
)  /  k ]_ B  e.  CC )  ->  ( G `  m
)  =  [_ (
f `  m )  /  k ]_ B
)
5740, 52, 56syl2anc 654 . . . 4  |-  ( (
ph  /\  m  e.  ( 1 ... M
) )  ->  ( G `  m )  =  [_ ( f `  m )  /  k ]_ B )
5857, 52eqeltrd 2507 . . 3  |-  ( (
ph  /\  m  e.  ( 1 ... M
) )  ->  ( G `  m )  e.  CC )
59 f1oeq2 5621 . . . . . . . . . . . 12  |-  ( ( 1 ... M )  =  ( 1 ... N )  ->  ( K : ( 1 ... M ) -1-1-onto-> A  <->  K : ( 1 ... N ) -1-1-onto-> A ) )
6035, 59syl 16 . . . . . . . . . . 11  |-  ( ph  ->  ( K : ( 1 ... M ) -1-1-onto-> A  <-> 
K : ( 1 ... N ) -1-1-onto-> A ) )
6116, 60mpbird 232 . . . . . . . . . 10  |-  ( ph  ->  K : ( 1 ... M ) -1-1-onto-> A )
62 f1of 5629 . . . . . . . . . 10  |-  ( K : ( 1 ... M ) -1-1-onto-> A  ->  K :
( 1 ... M
) --> A )
6361, 62syl 16 . . . . . . . . 9  |-  ( ph  ->  K : ( 1 ... M ) --> A )
64 fvco3 5756 . . . . . . . . 9  |-  ( ( K : ( 1 ... M ) --> A  /\  i  e.  ( 1 ... M ) )  ->  ( ( `' f  o.  K
) `  i )  =  ( `' f `
 ( K `  i ) ) )
6563, 64sylan 468 . . . . . . . 8  |-  ( (
ph  /\  i  e.  ( 1 ... M
) )  ->  (
( `' f  o.  K ) `  i
)  =  ( `' f `  ( K `
 i ) ) )
6665fveq2d 5683 . . . . . . 7  |-  ( (
ph  /\  i  e.  ( 1 ... M
) )  ->  (
f `  ( ( `' f  o.  K
) `  i )
)  =  ( f `
 ( `' f `
 ( K `  i ) ) ) )
6713adantr 462 . . . . . . . 8  |-  ( (
ph  /\  i  e.  ( 1 ... M
) )  ->  f : ( 1 ... M ) -1-1-onto-> A )
6863ffvelrnda 5831 . . . . . . . 8  |-  ( (
ph  /\  i  e.  ( 1 ... M
) )  ->  ( K `  i )  e.  A )
69 f1ocnvfv2 5971 . . . . . . . 8  |-  ( ( f : ( 1 ... M ) -1-1-onto-> A  /\  ( K `  i )  e.  A )  -> 
( f `  ( `' f `  ( K `  i )
) )  =  ( K `  i ) )
7067, 68, 69syl2anc 654 . . . . . . 7  |-  ( (
ph  /\  i  e.  ( 1 ... M
) )  ->  (
f `  ( `' f `  ( K `  i ) ) )  =  ( K `  i ) )
7166, 70eqtr2d 2466 . . . . . 6  |-  ( (
ph  /\  i  e.  ( 1 ... M
) )  ->  ( K `  i )  =  ( f `  ( ( `' f  o.  K ) `  i ) ) )
7271csbeq1d 3283 . . . . 5  |-  ( (
ph  /\  i  e.  ( 1 ... M
) )  ->  [_ ( K `  i )  /  k ]_ B  =  [_ ( f `  ( ( `' f  o.  K ) `  i ) )  / 
k ]_ B )
7372fveq2d 5683 . . . 4  |-  ( (
ph  /\  i  e.  ( 1 ... M
) )  ->  (  _I  `  [_ ( K `
 i )  / 
k ]_ B )  =  (  _I  `  [_ (
f `  ( ( `' f  o.  K
) `  i )
)  /  k ]_ B ) )
74 elfznn 11465 . . . . . 6  |-  ( i  e.  ( 1 ... M )  ->  i  e.  NN )
7574adantl 463 . . . . 5  |-  ( (
ph  /\  i  e.  ( 1 ... M
) )  ->  i  e.  NN )
76 fveq2 5679 . . . . . . 7  |-  ( n  =  i  ->  ( K `  n )  =  ( K `  i ) )
7776csbeq1d 3283 . . . . . 6  |-  ( n  =  i  ->  [_ ( K `  n )  /  k ]_ B  =  [_ ( K `  i )  /  k ]_ B )
78 summolem3.4 . . . . . 6  |-  H  =  ( n  e.  NN  |->  [_ ( K `  n
)  /  k ]_ B )
7977, 78fvmpti 5761 . . . . 5  |-  ( i  e.  NN  ->  ( H `  i )  =  (  _I  `  [_ ( K `  i )  /  k ]_ B
) )
8075, 79syl 16 . . . 4  |-  ( (
ph  /\  i  e.  ( 1 ... M
) )  ->  ( H `  i )  =  (  _I  `  [_ ( K `  i )  /  k ]_ B
) )
81 f1of 5629 . . . . . . 7  |-  ( ( `' f  o.  K
) : ( 1 ... M ) -1-1-onto-> ( 1 ... M )  -> 
( `' f  o.  K ) : ( 1 ... M ) --> ( 1 ... M
) )
8238, 81syl 16 . . . . . 6  |-  ( ph  ->  ( `' f  o.  K ) : ( 1 ... M ) --> ( 1 ... M
) )
8382ffvelrnda 5831 . . . . 5  |-  ( (
ph  /\  i  e.  ( 1 ... M
) )  ->  (
( `' f  o.  K ) `  i
)  e.  ( 1 ... M ) )
84 elfznn 11465 . . . . 5  |-  ( ( ( `' f  o.  K ) `  i
)  e.  ( 1 ... M )  -> 
( ( `' f  o.  K ) `  i )  e.  NN )
85 fveq2 5679 . . . . . . 7  |-  ( n  =  ( ( `' f  o.  K ) `
 i )  -> 
( f `  n
)  =  ( f `
 ( ( `' f  o.  K ) `
 i ) ) )
8685csbeq1d 3283 . . . . . 6  |-  ( n  =  ( ( `' f  o.  K ) `
 i )  ->  [_ ( f `  n
)  /  k ]_ B  =  [_ ( f `
 ( ( `' f  o.  K ) `
 i ) )  /  k ]_ B
)
8786, 55fvmpti 5761 . . . . 5  |-  ( ( ( `' f  o.  K ) `  i
)  e.  NN  ->  ( G `  ( ( `' f  o.  K
) `  i )
)  =  (  _I 
`  [_ ( f `  ( ( `' f  o.  K ) `  i ) )  / 
k ]_ B ) )
8883, 84, 873syl 20 . . . 4  |-  ( (
ph  /\  i  e.  ( 1 ... M
) )  ->  ( G `  ( ( `' f  o.  K
) `  i )
)  =  (  _I 
`  [_ ( f `  ( ( `' f  o.  K ) `  i ) )  / 
k ]_ B ) )
8973, 80, 883eqtr4d 2475 . . 3  |-  ( (
ph  /\  i  e.  ( 1 ... M
) )  ->  ( H `  i )  =  ( G `  ( ( `' f  o.  K ) `  i ) ) )
902, 4, 6, 10, 12, 38, 58, 89seqf1o 11831 . 2  |-  ( ph  ->  (  seq 1 (  +  ,  H ) `
 M )  =  (  seq 1 (  +  ,  G ) `
 M ) )
9134fveq2d 5683 . 2  |-  ( ph  ->  (  seq 1 (  +  ,  H ) `
 M )  =  (  seq 1 (  +  ,  H ) `
 N ) )
9290, 91eqtr3d 2467 1  |-  ( ph  ->  (  seq 1 (  +  ,  G ) `
 M )  =  (  seq 1 (  +  ,  H ) `
 N ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 958    = wceq 1362    e. wcel 1755   A.wral 2705   [_csb 3276    C_ wss 3316   ifcif 3779   class class class wbr 4280    e. cmpt 4338    _I cid 4618   `'ccnv 4826    o. ccom 4831   -->wf 5402   -1-1-onto->wf1o 5405   ` cfv 5406  (class class class)co 6080    ~~ cen 7295   Fincfn 7298   CCcc 9268   0cc0 9270   1c1 9271    + caddc 9273   NNcn 10310   NN0cn0 10567   ZZcz 10634   ZZ>=cuz 10849   ...cfz 11424    seqcseq 11790   #chash 12087
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1594  ax-4 1605  ax-5 1669  ax-6 1707  ax-7 1727  ax-8 1757  ax-9 1759  ax-10 1774  ax-11 1779  ax-12 1791  ax-13 1942  ax-ext 2414  ax-rep 4391  ax-sep 4401  ax-nul 4409  ax-pow 4458  ax-pr 4519  ax-un 6361  ax-cnex 9326  ax-resscn 9327  ax-1cn 9328  ax-icn 9329  ax-addcl 9330  ax-addrcl 9331  ax-mulcl 9332  ax-mulrcl 9333  ax-mulcom 9334  ax-addass 9335  ax-mulass 9336  ax-distr 9337  ax-i2m1 9338  ax-1ne0 9339  ax-1rid 9340  ax-rnegex 9341  ax-rrecex 9342  ax-cnre 9343  ax-pre-lttri 9344  ax-pre-lttrn 9345  ax-pre-ltadd 9346  ax-pre-mulgt0 9347
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 959  df-3an 960  df-tru 1365  df-ex 1590  df-nf 1593  df-sb 1700  df-eu 2258  df-mo 2259  df-clab 2420  df-cleq 2426  df-clel 2429  df-nfc 2558  df-ne 2598  df-nel 2599  df-ral 2710  df-rex 2711  df-reu 2712  df-rab 2714  df-v 2964  df-sbc 3176  df-csb 3277  df-dif 3319  df-un 3321  df-in 3323  df-ss 3330  df-pss 3332  df-nul 3626  df-if 3780  df-pw 3850  df-sn 3866  df-pr 3868  df-tp 3870  df-op 3872  df-uni 4080  df-int 4117  df-iun 4161  df-br 4281  df-opab 4339  df-mpt 4340  df-tr 4374  df-eprel 4619  df-id 4623  df-po 4628  df-so 4629  df-fr 4666  df-we 4668  df-ord 4709  df-on 4710  df-lim 4711  df-suc 4712  df-xp 4833  df-rel 4834  df-cnv 4835  df-co 4836  df-dm 4837  df-rn 4838  df-res 4839  df-ima 4840  df-iota 5369  df-fun 5408  df-fn 5409  df-f 5410  df-f1 5411  df-fo 5412  df-f1o 5413  df-fv 5414  df-riota 6039  df-ov 6083  df-oprab 6084  df-mpt2 6085  df-om 6466  df-1st 6566  df-2nd 6567  df-recs 6818  df-rdg 6852  df-1o 6908  df-oadd 6912  df-er 7089  df-en 7299  df-dom 7300  df-sdom 7301  df-fin 7302  df-card 8097  df-pnf 9408  df-mnf 9409  df-xr 9410  df-ltxr 9411  df-le 9412  df-sub 9585  df-neg 9586  df-nn 10311  df-n0 10568  df-z 10635  df-uz 10850  df-fz 11425  df-fzo 11533  df-seq 11791  df-hash 12088
This theorem is referenced by:  summolem2a  13176  summo  13178
  Copyright terms: Public domain W3C validator