MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sumeq1 Structured version   Unicode version

Theorem sumeq1 13277
Description: Equality theorem for a sum. (Contributed by NM, 11-Dec-2005.) (Revised by Mario Carneiro, 13-Jun-2019.)
Assertion
Ref Expression
sumeq1  |-  ( A  =  B  ->  sum_ k  e.  A  C  =  sum_ k  e.  B  C
)

Proof of Theorem sumeq1
Dummy variables  f  m  n  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sseq1 3478 . . . . . 6  |-  ( A  =  B  ->  ( A  C_  ( ZZ>= `  m
)  <->  B  C_  ( ZZ>= `  m ) ) )
2 simpl 457 . . . . . . . . . . 11  |-  ( ( A  =  B  /\  n  e.  ZZ )  ->  A  =  B )
32eleq2d 2521 . . . . . . . . . 10  |-  ( ( A  =  B  /\  n  e.  ZZ )  ->  ( n  e.  A  <->  n  e.  B ) )
43ifbid 3912 . . . . . . . . 9  |-  ( ( A  =  B  /\  n  e.  ZZ )  ->  if ( n  e.  A ,  [_ n  /  k ]_ C ,  0 )  =  if ( n  e.  B ,  [_ n  /  k ]_ C ,  0 ) )
54mpteq2dva 4479 . . . . . . . 8  |-  ( A  =  B  ->  (
n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ C ,  0 ) )  =  ( n  e.  ZZ  |->  if ( n  e.  B ,  [_ n  /  k ]_ C ,  0 ) ) )
65seqeq3d 11924 . . . . . . 7  |-  ( A  =  B  ->  seq m (  +  , 
( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ C ,  0 ) ) )  =  seq m (  +  , 
( n  e.  ZZ  |->  if ( n  e.  B ,  [_ n  /  k ]_ C ,  0 ) ) ) )
76breq1d 4403 . . . . . 6  |-  ( A  =  B  ->  (  seq m (  +  , 
( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ C ,  0 ) ) )  ~~>  x  <->  seq m
(  +  ,  ( n  e.  ZZ  |->  if ( n  e.  B ,  [_ n  /  k ]_ C ,  0 ) ) )  ~~>  x ) )
81, 7anbi12d 710 . . . . 5  |-  ( A  =  B  ->  (
( A  C_  ( ZZ>=
`  m )  /\  seq m (  +  , 
( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ C ,  0 ) ) )  ~~>  x )  <-> 
( B  C_  ( ZZ>=
`  m )  /\  seq m (  +  , 
( n  e.  ZZ  |->  if ( n  e.  B ,  [_ n  /  k ]_ C ,  0 ) ) )  ~~>  x ) ) )
98rexbidv 2855 . . . 4  |-  ( A  =  B  ->  ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  seq m (  +  , 
( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ C ,  0 ) ) )  ~~>  x )  <->  E. m  e.  ZZ  ( B  C_  ( ZZ>= `  m )  /\  seq m (  +  , 
( n  e.  ZZ  |->  if ( n  e.  B ,  [_ n  /  k ]_ C ,  0 ) ) )  ~~>  x ) ) )
10 f1oeq3 5735 . . . . . . 7  |-  ( A  =  B  ->  (
f : ( 1 ... m ) -1-1-onto-> A  <->  f :
( 1 ... m
)
-1-1-onto-> B ) )
1110anbi1d 704 . . . . . 6  |-  ( A  =  B  ->  (
( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  +  ,  ( n  e.  NN  |->  [_ ( f `  n )  /  k ]_ C ) ) `  m ) )  <->  ( f : ( 1 ... m ) -1-1-onto-> B  /\  x  =  (  seq 1 (  +  ,  ( n  e.  NN  |->  [_ (
f `  n )  /  k ]_ C
) ) `  m
) ) ) )
1211exbidv 1681 . . . . 5  |-  ( A  =  B  ->  ( E. f ( f : ( 1 ... m
)
-1-1-onto-> A  /\  x  =  (  seq 1 (  +  ,  ( n  e.  NN  |->  [_ ( f `  n )  /  k ]_ C ) ) `  m ) )  <->  E. f
( f : ( 1 ... m ) -1-1-onto-> B  /\  x  =  (  seq 1 (  +  ,  ( n  e.  NN  |->  [_ ( f `  n )  /  k ]_ C ) ) `  m ) ) ) )
1312rexbidv 2855 . . . 4  |-  ( A  =  B  ->  ( E. m  e.  NN  E. f ( f : ( 1 ... m
)
-1-1-onto-> A  /\  x  =  (  seq 1 (  +  ,  ( n  e.  NN  |->  [_ ( f `  n )  /  k ]_ C ) ) `  m ) )  <->  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> B  /\  x  =  (  seq 1 (  +  , 
( n  e.  NN  |->  [_ ( f `  n
)  /  k ]_ C ) ) `  m ) ) ) )
149, 13orbi12d 709 . . 3  |-  ( A  =  B  ->  (
( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  seq m (  +  ,  ( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ C ,  0 ) ) )  ~~>  x )  \/ 
E. m  e.  NN  E. f ( f : ( 1 ... m
)
-1-1-onto-> A  /\  x  =  (  seq 1 (  +  ,  ( n  e.  NN  |->  [_ ( f `  n )  /  k ]_ C ) ) `  m ) ) )  <-> 
( E. m  e.  ZZ  ( B  C_  ( ZZ>= `  m )  /\  seq m (  +  ,  ( n  e.  ZZ  |->  if ( n  e.  B ,  [_ n  /  k ]_ C ,  0 ) ) )  ~~>  x )  \/ 
E. m  e.  NN  E. f ( f : ( 1 ... m
)
-1-1-onto-> B  /\  x  =  (  seq 1 (  +  ,  ( n  e.  NN  |->  [_ ( f `  n )  /  k ]_ C ) ) `  m ) ) ) ) )
1514iotabidv 5503 . 2  |-  ( A  =  B  ->  ( iota x ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  seq m (  +  ,  ( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ C ,  0 ) ) )  ~~>  x )  \/ 
E. m  e.  NN  E. f ( f : ( 1 ... m
)
-1-1-onto-> A  /\  x  =  (  seq 1 (  +  ,  ( n  e.  NN  |->  [_ ( f `  n )  /  k ]_ C ) ) `  m ) ) ) )  =  ( iota
x ( E. m  e.  ZZ  ( B  C_  ( ZZ>= `  m )  /\  seq m (  +  ,  ( n  e.  ZZ  |->  if ( n  e.  B ,  [_ n  /  k ]_ C ,  0 ) ) )  ~~>  x )  \/ 
E. m  e.  NN  E. f ( f : ( 1 ... m
)
-1-1-onto-> B  /\  x  =  (  seq 1 (  +  ,  ( n  e.  NN  |->  [_ ( f `  n )  /  k ]_ C ) ) `  m ) ) ) ) )
16 df-sum 13275 . 2  |-  sum_ k  e.  A  C  =  ( iota x ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m
)  /\  seq m
(  +  ,  ( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ C ,  0 ) ) )  ~~>  x )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  +  , 
( n  e.  NN  |->  [_ ( f `  n
)  /  k ]_ C ) ) `  m ) ) ) )
17 df-sum 13275 . 2  |-  sum_ k  e.  B  C  =  ( iota x ( E. m  e.  ZZ  ( B  C_  ( ZZ>= `  m
)  /\  seq m
(  +  ,  ( n  e.  ZZ  |->  if ( n  e.  B ,  [_ n  /  k ]_ C ,  0 ) ) )  ~~>  x )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> B  /\  x  =  (  seq 1 (  +  , 
( n  e.  NN  |->  [_ ( f `  n
)  /  k ]_ C ) ) `  m ) ) ) )
1815, 16, 173eqtr4g 2517 1  |-  ( A  =  B  ->  sum_ k  e.  A  C  =  sum_ k  e.  B  C
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    \/ wo 368    /\ wa 369    = wceq 1370   E.wex 1587    e. wcel 1758   E.wrex 2796   [_csb 3389    C_ wss 3429   ifcif 3892   class class class wbr 4393    |-> cmpt 4451   iotacio 5480   -1-1-onto->wf1o 5518   ` cfv 5519  (class class class)co 6193   0cc0 9386   1c1 9387    + caddc 9389   NNcn 10426   ZZcz 10750   ZZ>=cuz 10965   ...cfz 11547    seqcseq 11916    ~~> cli 13073   sum_csu 13274
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1952  ax-ext 2430
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-clab 2437  df-cleq 2443  df-clel 2446  df-nfc 2601  df-ral 2800  df-rex 2801  df-rab 2804  df-v 3073  df-dif 3432  df-un 3434  df-in 3436  df-ss 3443  df-nul 3739  df-if 3893  df-sn 3979  df-pr 3981  df-op 3985  df-uni 4193  df-br 4394  df-opab 4452  df-mpt 4453  df-cnv 4949  df-dm 4951  df-rn 4952  df-res 4953  df-ima 4954  df-iota 5482  df-f 5523  df-f1 5524  df-fo 5525  df-f1o 5526  df-fv 5527  df-ov 6196  df-oprab 6197  df-mpt2 6198  df-recs 6935  df-rdg 6969  df-seq 11917  df-sum 13275
This theorem is referenced by:  sumeq1i  13286  sumeq1d  13289  sumz  13310  fsumadd  13326  fsum2d  13349  fsumrev2  13360  fsummulc2  13362  fsumconst  13368  fsumabs  13375  fsumrelem  13381  fsumrlim  13385  fsumo1  13386  fsumiun  13395  bitsinv2  13750  bitsf1ocnv  13751  bitsinv  13755  prmreclem5  14092  gsumfsum  17997  fsumcn  20571  ovolfiniun  21109  volfiniun  21154  itgfsum  21430  dvmptfsum  21573  pntrsumbnd2  22942  esumpcvgval  26665  esumcvg  26673  rrnval  28867  modfsummods  30385  modfsummod  30386
  Copyright terms: Public domain W3C validator