MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sumeq1 Structured version   Unicode version

Theorem sumeq1 13470
Description: Equality theorem for a sum. (Contributed by NM, 11-Dec-2005.) (Revised by Mario Carneiro, 13-Jun-2019.)
Assertion
Ref Expression
sumeq1  |-  ( A  =  B  ->  sum_ k  e.  A  C  =  sum_ k  e.  B  C
)

Proof of Theorem sumeq1
Dummy variables  f  m  n  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sseq1 3525 . . . . . 6  |-  ( A  =  B  ->  ( A  C_  ( ZZ>= `  m
)  <->  B  C_  ( ZZ>= `  m ) ) )
2 simpl 457 . . . . . . . . . . 11  |-  ( ( A  =  B  /\  n  e.  ZZ )  ->  A  =  B )
32eleq2d 2537 . . . . . . . . . 10  |-  ( ( A  =  B  /\  n  e.  ZZ )  ->  ( n  e.  A  <->  n  e.  B ) )
43ifbid 3961 . . . . . . . . 9  |-  ( ( A  =  B  /\  n  e.  ZZ )  ->  if ( n  e.  A ,  [_ n  /  k ]_ C ,  0 )  =  if ( n  e.  B ,  [_ n  /  k ]_ C ,  0 ) )
54mpteq2dva 4533 . . . . . . . 8  |-  ( A  =  B  ->  (
n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ C ,  0 ) )  =  ( n  e.  ZZ  |->  if ( n  e.  B ,  [_ n  /  k ]_ C ,  0 ) ) )
65seqeq3d 12079 . . . . . . 7  |-  ( A  =  B  ->  seq m (  +  , 
( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ C ,  0 ) ) )  =  seq m (  +  , 
( n  e.  ZZ  |->  if ( n  e.  B ,  [_ n  /  k ]_ C ,  0 ) ) ) )
76breq1d 4457 . . . . . 6  |-  ( A  =  B  ->  (  seq m (  +  , 
( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ C ,  0 ) ) )  ~~>  x  <->  seq m
(  +  ,  ( n  e.  ZZ  |->  if ( n  e.  B ,  [_ n  /  k ]_ C ,  0 ) ) )  ~~>  x ) )
81, 7anbi12d 710 . . . . 5  |-  ( A  =  B  ->  (
( A  C_  ( ZZ>=
`  m )  /\  seq m (  +  , 
( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ C ,  0 ) ) )  ~~>  x )  <-> 
( B  C_  ( ZZ>=
`  m )  /\  seq m (  +  , 
( n  e.  ZZ  |->  if ( n  e.  B ,  [_ n  /  k ]_ C ,  0 ) ) )  ~~>  x ) ) )
98rexbidv 2973 . . . 4  |-  ( A  =  B  ->  ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  seq m (  +  , 
( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ C ,  0 ) ) )  ~~>  x )  <->  E. m  e.  ZZ  ( B  C_  ( ZZ>= `  m )  /\  seq m (  +  , 
( n  e.  ZZ  |->  if ( n  e.  B ,  [_ n  /  k ]_ C ,  0 ) ) )  ~~>  x ) ) )
10 f1oeq3 5807 . . . . . . 7  |-  ( A  =  B  ->  (
f : ( 1 ... m ) -1-1-onto-> A  <->  f :
( 1 ... m
)
-1-1-onto-> B ) )
1110anbi1d 704 . . . . . 6  |-  ( A  =  B  ->  (
( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  +  ,  ( n  e.  NN  |->  [_ ( f `  n )  /  k ]_ C ) ) `  m ) )  <->  ( f : ( 1 ... m ) -1-1-onto-> B  /\  x  =  (  seq 1 (  +  ,  ( n  e.  NN  |->  [_ (
f `  n )  /  k ]_ C
) ) `  m
) ) ) )
1211exbidv 1690 . . . . 5  |-  ( A  =  B  ->  ( E. f ( f : ( 1 ... m
)
-1-1-onto-> A  /\  x  =  (  seq 1 (  +  ,  ( n  e.  NN  |->  [_ ( f `  n )  /  k ]_ C ) ) `  m ) )  <->  E. f
( f : ( 1 ... m ) -1-1-onto-> B  /\  x  =  (  seq 1 (  +  ,  ( n  e.  NN  |->  [_ ( f `  n )  /  k ]_ C ) ) `  m ) ) ) )
1312rexbidv 2973 . . . 4  |-  ( A  =  B  ->  ( E. m  e.  NN  E. f ( f : ( 1 ... m
)
-1-1-onto-> A  /\  x  =  (  seq 1 (  +  ,  ( n  e.  NN  |->  [_ ( f `  n )  /  k ]_ C ) ) `  m ) )  <->  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> B  /\  x  =  (  seq 1 (  +  , 
( n  e.  NN  |->  [_ ( f `  n
)  /  k ]_ C ) ) `  m ) ) ) )
149, 13orbi12d 709 . . 3  |-  ( A  =  B  ->  (
( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  seq m (  +  ,  ( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ C ,  0 ) ) )  ~~>  x )  \/ 
E. m  e.  NN  E. f ( f : ( 1 ... m
)
-1-1-onto-> A  /\  x  =  (  seq 1 (  +  ,  ( n  e.  NN  |->  [_ ( f `  n )  /  k ]_ C ) ) `  m ) ) )  <-> 
( E. m  e.  ZZ  ( B  C_  ( ZZ>= `  m )  /\  seq m (  +  ,  ( n  e.  ZZ  |->  if ( n  e.  B ,  [_ n  /  k ]_ C ,  0 ) ) )  ~~>  x )  \/ 
E. m  e.  NN  E. f ( f : ( 1 ... m
)
-1-1-onto-> B  /\  x  =  (  seq 1 (  +  ,  ( n  e.  NN  |->  [_ ( f `  n )  /  k ]_ C ) ) `  m ) ) ) ) )
1514iotabidv 5570 . 2  |-  ( A  =  B  ->  ( iota x ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  seq m (  +  ,  ( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ C ,  0 ) ) )  ~~>  x )  \/ 
E. m  e.  NN  E. f ( f : ( 1 ... m
)
-1-1-onto-> A  /\  x  =  (  seq 1 (  +  ,  ( n  e.  NN  |->  [_ ( f `  n )  /  k ]_ C ) ) `  m ) ) ) )  =  ( iota
x ( E. m  e.  ZZ  ( B  C_  ( ZZ>= `  m )  /\  seq m (  +  ,  ( n  e.  ZZ  |->  if ( n  e.  B ,  [_ n  /  k ]_ C ,  0 ) ) )  ~~>  x )  \/ 
E. m  e.  NN  E. f ( f : ( 1 ... m
)
-1-1-onto-> B  /\  x  =  (  seq 1 (  +  ,  ( n  e.  NN  |->  [_ ( f `  n )  /  k ]_ C ) ) `  m ) ) ) ) )
16 df-sum 13468 . 2  |-  sum_ k  e.  A  C  =  ( iota x ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m
)  /\  seq m
(  +  ,  ( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ C ,  0 ) ) )  ~~>  x )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  +  , 
( n  e.  NN  |->  [_ ( f `  n
)  /  k ]_ C ) ) `  m ) ) ) )
17 df-sum 13468 . 2  |-  sum_ k  e.  B  C  =  ( iota x ( E. m  e.  ZZ  ( B  C_  ( ZZ>= `  m
)  /\  seq m
(  +  ,  ( n  e.  ZZ  |->  if ( n  e.  B ,  [_ n  /  k ]_ C ,  0 ) ) )  ~~>  x )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> B  /\  x  =  (  seq 1 (  +  , 
( n  e.  NN  |->  [_ ( f `  n
)  /  k ]_ C ) ) `  m ) ) ) )
1815, 16, 173eqtr4g 2533 1  |-  ( A  =  B  ->  sum_ k  e.  A  C  =  sum_ k  e.  B  C
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    \/ wo 368    /\ wa 369    = wceq 1379   E.wex 1596    e. wcel 1767   E.wrex 2815   [_csb 3435    C_ wss 3476   ifcif 3939   class class class wbr 4447    |-> cmpt 4505   iotacio 5547   -1-1-onto->wf1o 5585   ` cfv 5586  (class class class)co 6282   0cc0 9488   1c1 9489    + caddc 9491   NNcn 10532   ZZcz 10860   ZZ>=cuz 11078   ...cfz 11668    seqcseq 12071    ~~> cli 13266   sum_csu 13467
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ral 2819  df-rex 2820  df-rab 2823  df-v 3115  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-nul 3786  df-if 3940  df-sn 4028  df-pr 4030  df-op 4034  df-uni 4246  df-br 4448  df-opab 4506  df-mpt 4507  df-cnv 5007  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5549  df-f 5590  df-f1 5591  df-fo 5592  df-f1o 5593  df-fv 5594  df-ov 6285  df-oprab 6286  df-mpt2 6287  df-recs 7039  df-rdg 7073  df-seq 12072  df-sum 13468
This theorem is referenced by:  sumeq1i  13479  sumeq1d  13482  sumz  13503  fsumadd  13520  fsum2d  13545  fsumrev2  13556  fsummulc2  13558  fsumconst  13564  modfsummods  13566  modfsummod  13567  fsumabs  13574  fsumrelem  13580  fsumrlim  13584  fsumo1  13585  fsumiun  13594  bitsinv2  13948  bitsf1ocnv  13949  bitsinv  13953  prmreclem5  14293  gsumfsum  18252  fsumcn  21109  ovolfiniun  21647  volfiniun  21692  itgfsum  21968  dvmptfsum  22111  pntrsumbnd2  23480  esumpcvgval  27724  esumcvg  27732  rrnval  29926
  Copyright terms: Public domain W3C validator