HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  sumdmdlem2 Structured version   Unicode version

Theorem sumdmdlem2 27042
Description: Lemma for sumdmdi 27043. (Contributed by NM, 23-Dec-2004.) (New usage is discouraged.)
Hypotheses
Ref Expression
sumdmdi.1  |-  A  e. 
CH
sumdmdi.2  |-  B  e. 
CH
Assertion
Ref Expression
sumdmdlem2  |-  ( A. x  e. HAtoms  ( (
x  vH  B )  i^i  ( A  vH  B
) )  C_  (
( ( x  vH  B )  i^i  A
)  vH  B )  ->  ( A  +H  B
)  =  ( A  vH  B ) )
Distinct variable groups:    x, A    x, B

Proof of Theorem sumdmdlem2
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 sumdmdi.1 . . . . . . . 8  |-  A  e. 
CH
2 sumdmdi.2 . . . . . . . 8  |-  B  e. 
CH
31, 2chjcli 26079 . . . . . . 7  |-  ( A  vH  B )  e. 
CH
43cheli 25854 . . . . . 6  |-  ( y  e.  ( A  vH  B )  ->  y  e.  ~H )
5 spansnsh 26183 . . . . . . . . . . . . 13  |-  ( y  e.  ~H  ->  ( span `  { y } )  e.  SH )
62chshii 25849 . . . . . . . . . . . . 13  |-  B  e.  SH
7 shsub2 25947 . . . . . . . . . . . . 13  |-  ( ( ( span `  {
y } )  e.  SH  /\  B  e.  SH )  ->  ( span `  { y } )  C_  ( B  +H  ( span `  {
y } ) ) )
85, 6, 7sylancl 662 . . . . . . . . . . . 12  |-  ( y  e.  ~H  ->  ( span `  { y } )  C_  ( B  +H  ( span `  {
y } ) ) )
9 spansnid 26185 . . . . . . . . . . . 12  |-  ( y  e.  ~H  ->  y  e.  ( span `  {
y } ) )
108, 9sseldd 3505 . . . . . . . . . . 11  |-  ( y  e.  ~H  ->  y  e.  ( B  +H  ( span `  { y } ) ) )
1110ad2antrl 727 . . . . . . . . . 10  |-  ( ( A. x  e. HAtoms  (
( x  vH  B
)  i^i  ( A  vH  B ) )  C_  ( ( ( x  vH  B )  i^i 
A )  vH  B
)  /\  ( y  e.  ~H  /\  -.  y  e.  ( A  +H  B
) ) )  -> 
y  e.  ( B  +H  ( span `  {
y } ) ) )
12 elin 3687 . . . . . . . . . . 11  |-  ( y  e.  ( ( B  +H  ( span `  {
y } ) )  i^i  ( A  vH  B ) )  <->  ( y  e.  ( B  +H  ( span `  { y } ) )  /\  y  e.  ( A  vH  B
) ) )
13 df-ne 2664 . . . . . . . . . . . . . . . . . . . 20  |-  ( y  =/=  0h  <->  -.  y  =  0h )
14 spansna 26973 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( y  e.  ~H  /\  y  =/=  0h )  -> 
( span `  { y } )  e. HAtoms )
1513, 14sylan2br 476 . . . . . . . . . . . . . . . . . . 19  |-  ( ( y  e.  ~H  /\  -.  y  =  0h )  ->  ( span `  {
y } )  e. HAtoms
)
16 oveq1 6291 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( x  =  ( span `  {
y } )  -> 
( x  vH  B
)  =  ( (
span `  { y } )  vH  B
) )
1716ineq1d 3699 . . . . . . . . . . . . . . . . . . . . 21  |-  ( x  =  ( span `  {
y } )  -> 
( ( x  vH  B )  i^i  ( A  vH  B ) )  =  ( ( (
span `  { y } )  vH  B
)  i^i  ( A  vH  B ) ) )
1816ineq1d 3699 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( x  =  ( span `  {
y } )  -> 
( ( x  vH  B )  i^i  A
)  =  ( ( ( span `  {
y } )  vH  B )  i^i  A
) )
1918oveq1d 6299 . . . . . . . . . . . . . . . . . . . . 21  |-  ( x  =  ( span `  {
y } )  -> 
( ( ( x  vH  B )  i^i 
A )  vH  B
)  =  ( ( ( ( span `  {
y } )  vH  B )  i^i  A
)  vH  B )
)
2017, 19sseq12d 3533 . . . . . . . . . . . . . . . . . . . 20  |-  ( x  =  ( span `  {
y } )  -> 
( ( ( x  vH  B )  i^i  ( A  vH  B
) )  C_  (
( ( x  vH  B )  i^i  A
)  vH  B )  <->  ( ( ( span `  {
y } )  vH  B )  i^i  ( A  vH  B ) ) 
C_  ( ( ( ( span `  {
y } )  vH  B )  i^i  A
)  vH  B )
) )
2120rspcv 3210 . . . . . . . . . . . . . . . . . . 19  |-  ( (
span `  { y } )  e. HAtoms  ->  ( A. x  e. HAtoms  (
( x  vH  B
)  i^i  ( A  vH  B ) )  C_  ( ( ( x  vH  B )  i^i 
A )  vH  B
)  ->  ( (
( span `  { y } )  vH  B
)  i^i  ( A  vH  B ) )  C_  ( ( ( (
span `  { y } )  vH  B
)  i^i  A )  vH  B ) ) )
2215, 21syl 16 . . . . . . . . . . . . . . . . . 18  |-  ( ( y  e.  ~H  /\  -.  y  =  0h )  ->  ( A. x  e. HAtoms  ( ( x  vH  B )  i^i  ( A  vH  B ) ) 
C_  ( ( ( x  vH  B )  i^i  A )  vH  B )  ->  (
( ( span `  {
y } )  vH  B )  i^i  ( A  vH  B ) ) 
C_  ( ( ( ( span `  {
y } )  vH  B )  i^i  A
)  vH  B )
) )
23 spansnj 26269 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( B  e.  CH  /\  y  e.  ~H )  ->  ( B  +H  ( span `  { y } ) )  =  ( B  vH  ( span `  { y } ) ) )
24 spansnch 26182 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( y  e.  ~H  ->  ( span `  { y } )  e.  CH )
25 chjcom 26128 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( B  e.  CH  /\  ( span `  { y } )  e.  CH )  ->  ( B  vH  ( span `  { y } ) )  =  ( ( span `  {
y } )  vH  B ) )
2624, 25sylan2 474 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( B  e.  CH  /\  y  e.  ~H )  ->  ( B  vH  ( span `  { y } ) )  =  ( ( span `  {
y } )  vH  B ) )
2723, 26eqtrd 2508 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( B  e.  CH  /\  y  e.  ~H )  ->  ( B  +H  ( span `  { y } ) )  =  ( ( span `  {
y } )  vH  B ) )
282, 27mpan 670 . . . . . . . . . . . . . . . . . . . . 21  |-  ( y  e.  ~H  ->  ( B  +H  ( span `  {
y } ) )  =  ( ( span `  { y } )  vH  B ) )
2928ineq1d 3699 . . . . . . . . . . . . . . . . . . . 20  |-  ( y  e.  ~H  ->  (
( B  +H  ( span `  { y } ) )  i^i  ( A  vH  B ) )  =  ( ( (
span `  { y } )  vH  B
)  i^i  ( A  vH  B ) ) )
3028ineq1d 3699 . . . . . . . . . . . . . . . . . . . . 21  |-  ( y  e.  ~H  ->  (
( B  +H  ( span `  { y } ) )  i^i  A
)  =  ( ( ( span `  {
y } )  vH  B )  i^i  A
) )
3130oveq1d 6299 . . . . . . . . . . . . . . . . . . . 20  |-  ( y  e.  ~H  ->  (
( ( B  +H  ( span `  { y } ) )  i^i 
A )  vH  B
)  =  ( ( ( ( span `  {
y } )  vH  B )  i^i  A
)  vH  B )
)
3229, 31sseq12d 3533 . . . . . . . . . . . . . . . . . . 19  |-  ( y  e.  ~H  ->  (
( ( B  +H  ( span `  { y } ) )  i^i  ( A  vH  B
) )  C_  (
( ( B  +H  ( span `  { y } ) )  i^i 
A )  vH  B
)  <->  ( ( (
span `  { y } )  vH  B
)  i^i  ( A  vH  B ) )  C_  ( ( ( (
span `  { y } )  vH  B
)  i^i  A )  vH  B ) ) )
3332adantr 465 . . . . . . . . . . . . . . . . . 18  |-  ( ( y  e.  ~H  /\  -.  y  =  0h )  ->  ( ( ( B  +H  ( span `  { y } ) )  i^i  ( A  vH  B ) ) 
C_  ( ( ( B  +H  ( span `  { y } ) )  i^i  A )  vH  B )  <->  ( (
( span `  { y } )  vH  B
)  i^i  ( A  vH  B ) )  C_  ( ( ( (
span `  { y } )  vH  B
)  i^i  A )  vH  B ) ) )
3422, 33sylibrd 234 . . . . . . . . . . . . . . . . 17  |-  ( ( y  e.  ~H  /\  -.  y  =  0h )  ->  ( A. x  e. HAtoms  ( ( x  vH  B )  i^i  ( A  vH  B ) ) 
C_  ( ( ( x  vH  B )  i^i  A )  vH  B )  ->  (
( B  +H  ( span `  { y } ) )  i^i  ( A  vH  B ) ) 
C_  ( ( ( B  +H  ( span `  { y } ) )  i^i  A )  vH  B ) ) )
3534com12 31 . . . . . . . . . . . . . . . 16  |-  ( A. x  e. HAtoms  ( (
x  vH  B )  i^i  ( A  vH  B
) )  C_  (
( ( x  vH  B )  i^i  A
)  vH  B )  ->  ( ( y  e. 
~H  /\  -.  y  =  0h )  ->  (
( B  +H  ( span `  { y } ) )  i^i  ( A  vH  B ) ) 
C_  ( ( ( B  +H  ( span `  { y } ) )  i^i  A )  vH  B ) ) )
3635expdimp 437 . . . . . . . . . . . . . . 15  |-  ( ( A. x  e. HAtoms  (
( x  vH  B
)  i^i  ( A  vH  B ) )  C_  ( ( ( x  vH  B )  i^i 
A )  vH  B
)  /\  y  e.  ~H )  ->  ( -.  y  =  0h  ->  ( ( B  +H  ( span `  { y } ) )  i^i  ( A  vH  B ) ) 
C_  ( ( ( B  +H  ( span `  { y } ) )  i^i  A )  vH  B ) ) )
37 ssid 3523 . . . . . . . . . . . . . . . 16  |-  B  C_  B
38 sneq 4037 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( y  =  0h  ->  { y }  =  { 0h } )
3938fveq2d 5870 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( y  =  0h  ->  ( span `  { y } )  =  ( span `  { 0h } ) )
40 spansn0 26163 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( span `  { 0h } )  =  0H
4139, 40syl6eq 2524 . . . . . . . . . . . . . . . . . . . . 21  |-  ( y  =  0h  ->  ( span `  { y } )  =  0H )
4241oveq2d 6300 . . . . . . . . . . . . . . . . . . . 20  |-  ( y  =  0h  ->  ( B  +H  ( span `  {
y } ) )  =  ( B  +H  0H ) )
436shs0i 26071 . . . . . . . . . . . . . . . . . . . 20  |-  ( B  +H  0H )  =  B
4442, 43syl6eq 2524 . . . . . . . . . . . . . . . . . . 19  |-  ( y  =  0h  ->  ( B  +H  ( span `  {
y } ) )  =  B )
4544ineq1d 3699 . . . . . . . . . . . . . . . . . 18  |-  ( y  =  0h  ->  (
( B  +H  ( span `  { y } ) )  i^i  ( A  vH  B ) )  =  ( B  i^i  ( A  vH  B ) ) )
46 inss1 3718 . . . . . . . . . . . . . . . . . . 19  |-  ( B  i^i  ( A  vH  B ) )  C_  B
472, 1chub2i 26092 . . . . . . . . . . . . . . . . . . . 20  |-  B  C_  ( A  vH  B )
4837, 47ssini 3721 . . . . . . . . . . . . . . . . . . 19  |-  B  C_  ( B  i^i  ( A  vH  B ) )
4946, 48eqssi 3520 . . . . . . . . . . . . . . . . . 18  |-  ( B  i^i  ( A  vH  B ) )  =  B
5045, 49syl6eq 2524 . . . . . . . . . . . . . . . . 17  |-  ( y  =  0h  ->  (
( B  +H  ( span `  { y } ) )  i^i  ( A  vH  B ) )  =  B )
5144ineq1d 3699 . . . . . . . . . . . . . . . . . . 19  |-  ( y  =  0h  ->  (
( B  +H  ( span `  { y } ) )  i^i  A
)  =  ( B  i^i  A ) )
5251oveq1d 6299 . . . . . . . . . . . . . . . . . 18  |-  ( y  =  0h  ->  (
( ( B  +H  ( span `  { y } ) )  i^i 
A )  vH  B
)  =  ( ( B  i^i  A )  vH  B ) )
532, 1chincli 26082 . . . . . . . . . . . . . . . . . . . 20  |-  ( B  i^i  A )  e. 
CH
5453, 2chjcomi 26090 . . . . . . . . . . . . . . . . . . 19  |-  ( ( B  i^i  A )  vH  B )  =  ( B  vH  ( B  i^i  A ) )
552, 1chabs1i 26140 . . . . . . . . . . . . . . . . . . 19  |-  ( B  vH  ( B  i^i  A ) )  =  B
5654, 55eqtri 2496 . . . . . . . . . . . . . . . . . 18  |-  ( ( B  i^i  A )  vH  B )  =  B
5752, 56syl6eq 2524 . . . . . . . . . . . . . . . . 17  |-  ( y  =  0h  ->  (
( ( B  +H  ( span `  { y } ) )  i^i 
A )  vH  B
)  =  B )
5850, 57sseq12d 3533 . . . . . . . . . . . . . . . 16  |-  ( y  =  0h  ->  (
( ( B  +H  ( span `  { y } ) )  i^i  ( A  vH  B
) )  C_  (
( ( B  +H  ( span `  { y } ) )  i^i 
A )  vH  B
)  <->  B  C_  B ) )
5937, 58mpbiri 233 . . . . . . . . . . . . . . 15  |-  ( y  =  0h  ->  (
( B  +H  ( span `  { y } ) )  i^i  ( A  vH  B ) ) 
C_  ( ( ( B  +H  ( span `  { y } ) )  i^i  A )  vH  B ) )
6036, 59pm2.61d2 160 . . . . . . . . . . . . . 14  |-  ( ( A. x  e. HAtoms  (
( x  vH  B
)  i^i  ( A  vH  B ) )  C_  ( ( ( x  vH  B )  i^i 
A )  vH  B
)  /\  y  e.  ~H )  ->  ( ( B  +H  ( span `  { y } ) )  i^i  ( A  vH  B ) ) 
C_  ( ( ( B  +H  ( span `  { y } ) )  i^i  A )  vH  B ) )
6160adantrr 716 . . . . . . . . . . . . 13  |-  ( ( A. x  e. HAtoms  (
( x  vH  B
)  i^i  ( A  vH  B ) )  C_  ( ( ( x  vH  B )  i^i 
A )  vH  B
)  /\  ( y  e.  ~H  /\  -.  y  e.  ( A  +H  B
) ) )  -> 
( ( B  +H  ( span `  { y } ) )  i^i  ( A  vH  B
) )  C_  (
( ( B  +H  ( span `  { y } ) )  i^i 
A )  vH  B
) )
621, 2sumdmdlem 27041 . . . . . . . . . . . . . . . . 17  |-  ( ( y  e.  ~H  /\  -.  y  e.  ( A  +H  B ) )  ->  ( ( B  +H  ( span `  {
y } ) )  i^i  A )  =  ( B  i^i  A
) )
6362oveq1d 6299 . . . . . . . . . . . . . . . 16  |-  ( ( y  e.  ~H  /\  -.  y  e.  ( A  +H  B ) )  ->  ( ( ( B  +H  ( span `  { y } ) )  i^i  A )  vH  B )  =  ( ( B  i^i  A )  vH  B ) )
6463, 56syl6eq 2524 . . . . . . . . . . . . . . 15  |-  ( ( y  e.  ~H  /\  -.  y  e.  ( A  +H  B ) )  ->  ( ( ( B  +H  ( span `  { y } ) )  i^i  A )  vH  B )  =  B )
651chshii 25849 . . . . . . . . . . . . . . . 16  |-  A  e.  SH
666, 65shsub2i 25995 . . . . . . . . . . . . . . 15  |-  B  C_  ( A  +H  B
)
6764, 66syl6eqss 3554 . . . . . . . . . . . . . 14  |-  ( ( y  e.  ~H  /\  -.  y  e.  ( A  +H  B ) )  ->  ( ( ( B  +H  ( span `  { y } ) )  i^i  A )  vH  B )  C_  ( A  +H  B
) )
6867adantl 466 . . . . . . . . . . . . 13  |-  ( ( A. x  e. HAtoms  (
( x  vH  B
)  i^i  ( A  vH  B ) )  C_  ( ( ( x  vH  B )  i^i 
A )  vH  B
)  /\  ( y  e.  ~H  /\  -.  y  e.  ( A  +H  B
) ) )  -> 
( ( ( B  +H  ( span `  {
y } ) )  i^i  A )  vH  B )  C_  ( A  +H  B ) )
6961, 68sstrd 3514 . . . . . . . . . . . 12  |-  ( ( A. x  e. HAtoms  (
( x  vH  B
)  i^i  ( A  vH  B ) )  C_  ( ( ( x  vH  B )  i^i 
A )  vH  B
)  /\  ( y  e.  ~H  /\  -.  y  e.  ( A  +H  B
) ) )  -> 
( ( B  +H  ( span `  { y } ) )  i^i  ( A  vH  B
) )  C_  ( A  +H  B ) )
7069sseld 3503 . . . . . . . . . . 11  |-  ( ( A. x  e. HAtoms  (
( x  vH  B
)  i^i  ( A  vH  B ) )  C_  ( ( ( x  vH  B )  i^i 
A )  vH  B
)  /\  ( y  e.  ~H  /\  -.  y  e.  ( A  +H  B
) ) )  -> 
( y  e.  ( ( B  +H  ( span `  { y } ) )  i^i  ( A  vH  B ) )  ->  y  e.  ( A  +H  B ) ) )
7112, 70syl5bir 218 . . . . . . . . . 10  |-  ( ( A. x  e. HAtoms  (
( x  vH  B
)  i^i  ( A  vH  B ) )  C_  ( ( ( x  vH  B )  i^i 
A )  vH  B
)  /\  ( y  e.  ~H  /\  -.  y  e.  ( A  +H  B
) ) )  -> 
( ( y  e.  ( B  +H  ( span `  { y } ) )  /\  y  e.  ( A  vH  B
) )  ->  y  e.  ( A  +H  B
) ) )
7211, 71mpand 675 . . . . . . . . 9  |-  ( ( A. x  e. HAtoms  (
( x  vH  B
)  i^i  ( A  vH  B ) )  C_  ( ( ( x  vH  B )  i^i 
A )  vH  B
)  /\  ( y  e.  ~H  /\  -.  y  e.  ( A  +H  B
) ) )  -> 
( y  e.  ( A  vH  B )  ->  y  e.  ( A  +H  B ) ) )
7372exp32 605 . . . . . . . 8  |-  ( A. x  e. HAtoms  ( (
x  vH  B )  i^i  ( A  vH  B
) )  C_  (
( ( x  vH  B )  i^i  A
)  vH  B )  ->  ( y  e.  ~H  ->  ( -.  y  e.  ( A  +H  B
)  ->  ( y  e.  ( A  vH  B
)  ->  y  e.  ( A  +H  B
) ) ) ) )
7473com34 83 . . . . . . 7  |-  ( A. x  e. HAtoms  ( (
x  vH  B )  i^i  ( A  vH  B
) )  C_  (
( ( x  vH  B )  i^i  A
)  vH  B )  ->  ( y  e.  ~H  ->  ( y  e.  ( A  vH  B )  ->  ( -.  y  e.  ( A  +H  B
)  ->  y  e.  ( A  +H  B
) ) ) ) )
75 pm2.18 110 . . . . . . 7  |-  ( ( -.  y  e.  ( A  +H  B )  ->  y  e.  ( A  +H  B ) )  ->  y  e.  ( A  +H  B
) )
7674, 75syl8 70 . . . . . 6  |-  ( A. x  e. HAtoms  ( (
x  vH  B )  i^i  ( A  vH  B
) )  C_  (
( ( x  vH  B )  i^i  A
)  vH  B )  ->  ( y  e.  ~H  ->  ( y  e.  ( A  vH  B )  ->  y  e.  ( A  +H  B ) ) ) )
774, 76syl5 32 . . . . 5  |-  ( A. x  e. HAtoms  ( (
x  vH  B )  i^i  ( A  vH  B
) )  C_  (
( ( x  vH  B )  i^i  A
)  vH  B )  ->  ( y  e.  ( A  vH  B )  ->  ( y  e.  ( A  vH  B
)  ->  y  e.  ( A  +H  B
) ) ) )
7877pm2.43d 48 . . . 4  |-  ( A. x  e. HAtoms  ( (
x  vH  B )  i^i  ( A  vH  B
) )  C_  (
( ( x  vH  B )  i^i  A
)  vH  B )  ->  ( y  e.  ( A  vH  B )  ->  y  e.  ( A  +H  B ) ) )
7978ssrdv 3510 . . 3  |-  ( A. x  e. HAtoms  ( (
x  vH  B )  i^i  ( A  vH  B
) )  C_  (
( ( x  vH  B )  i^i  A
)  vH  B )  ->  ( A  vH  B
)  C_  ( A  +H  B ) )
801, 2chsleji 26080 . . 3  |-  ( A  +H  B )  C_  ( A  vH  B )
8179, 80jctil 537 . 2  |-  ( A. x  e. HAtoms  ( (
x  vH  B )  i^i  ( A  vH  B
) )  C_  (
( ( x  vH  B )  i^i  A
)  vH  B )  ->  ( ( A  +H  B )  C_  ( A  vH  B )  /\  ( A  vH  B ) 
C_  ( A  +H  B ) ) )
82 eqss 3519 . 2  |-  ( ( A  +H  B )  =  ( A  vH  B )  <->  ( ( A  +H  B )  C_  ( A  vH  B )  /\  ( A  vH  B )  C_  ( A  +H  B ) ) )
8381, 82sylibr 212 1  |-  ( A. x  e. HAtoms  ( (
x  vH  B )  i^i  ( A  vH  B
) )  C_  (
( ( x  vH  B )  i^i  A
)  vH  B )  ->  ( A  +H  B
)  =  ( A  vH  B ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1379    e. wcel 1767    =/= wne 2662   A.wral 2814    i^i cin 3475    C_ wss 3476   {csn 4027   ` cfv 5588  (class class class)co 6284   ~Hchil 25540   0hc0v 25545   SHcsh 25549   CHcch 25550    +H cph 25552   spancspn 25553    vH chj 25554   0Hc0h 25556  HAtomscat 25586
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4558  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6576  ax-inf2 8058  ax-cc 8815  ax-cnex 9548  ax-resscn 9549  ax-1cn 9550  ax-icn 9551  ax-addcl 9552  ax-addrcl 9553  ax-mulcl 9554  ax-mulrcl 9555  ax-mulcom 9556  ax-addass 9557  ax-mulass 9558  ax-distr 9559  ax-i2m1 9560  ax-1ne0 9561  ax-1rid 9562  ax-rnegex 9563  ax-rrecex 9564  ax-cnre 9565  ax-pre-lttri 9566  ax-pre-lttrn 9567  ax-pre-ltadd 9568  ax-pre-mulgt0 9569  ax-pre-sup 9570  ax-addf 9571  ax-mulf 9572  ax-hilex 25620  ax-hfvadd 25621  ax-hvcom 25622  ax-hvass 25623  ax-hv0cl 25624  ax-hvaddid 25625  ax-hfvmul 25626  ax-hvmulid 25627  ax-hvmulass 25628  ax-hvdistr1 25629  ax-hvdistr2 25630  ax-hvmul0 25631  ax-hfi 25700  ax-his1 25703  ax-his2 25704  ax-his3 25705  ax-his4 25706  ax-hcompl 25823
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-fal 1385  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2819  df-rex 2820  df-reu 2821  df-rmo 2822  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-pss 3492  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-tp 4032  df-op 4034  df-uni 4246  df-int 4283  df-iun 4327  df-iin 4328  df-br 4448  df-opab 4506  df-mpt 4507  df-tr 4541  df-eprel 4791  df-id 4795  df-po 4800  df-so 4801  df-fr 4838  df-se 4839  df-we 4840  df-ord 4881  df-on 4882  df-lim 4883  df-suc 4884  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5551  df-fun 5590  df-fn 5591  df-f 5592  df-f1 5593  df-fo 5594  df-f1o 5595  df-fv 5596  df-isom 5597  df-riota 6245  df-ov 6287  df-oprab 6288  df-mpt2 6289  df-of 6524  df-om 6685  df-1st 6784  df-2nd 6785  df-supp 6902  df-recs 7042  df-rdg 7076  df-1o 7130  df-2o 7131  df-oadd 7134  df-omul 7135  df-er 7311  df-map 7422  df-pm 7423  df-ixp 7470  df-en 7517  df-dom 7518  df-sdom 7519  df-fin 7520  df-fsupp 7830  df-fi 7871  df-sup 7901  df-oi 7935  df-card 8320  df-acn 8323  df-cda 8548  df-pnf 9630  df-mnf 9631  df-xr 9632  df-ltxr 9633  df-le 9634  df-sub 9807  df-neg 9808  df-div 10207  df-nn 10537  df-2 10594  df-3 10595  df-4 10596  df-5 10597  df-6 10598  df-7 10599  df-8 10600  df-9 10601  df-10 10602  df-n0 10796  df-z 10865  df-dec 10977  df-uz 11083  df-q 11183  df-rp 11221  df-xneg 11318  df-xadd 11319  df-xmul 11320  df-ioo 11533  df-ico 11535  df-icc 11536  df-fz 11673  df-fzo 11793  df-fl 11897  df-seq 12076  df-exp 12135  df-hash 12374  df-cj 12895  df-re 12896  df-im 12897  df-sqrt 13031  df-abs 13032  df-clim 13274  df-rlim 13275  df-sum 13472  df-struct 14492  df-ndx 14493  df-slot 14494  df-base 14495  df-sets 14496  df-ress 14497  df-plusg 14568  df-mulr 14569  df-starv 14570  df-sca 14571  df-vsca 14572  df-ip 14573  df-tset 14574  df-ple 14575  df-ds 14577  df-unif 14578  df-hom 14579  df-cco 14580  df-rest 14678  df-topn 14679  df-0g 14697  df-gsum 14698  df-topgen 14699  df-pt 14700  df-prds 14703  df-xrs 14757  df-qtop 14762  df-imas 14763  df-xps 14765  df-mre 14841  df-mrc 14842  df-acs 14844  df-mnd 15732  df-submnd 15787  df-mulg 15870  df-cntz 16160  df-cmn 16606  df-psmet 18210  df-xmet 18211  df-met 18212  df-bl 18213  df-mopn 18214  df-fbas 18215  df-fg 18216  df-cnfld 18220  df-top 19194  df-bases 19196  df-topon 19197  df-topsp 19198  df-cld 19314  df-ntr 19315  df-cls 19316  df-nei 19393  df-cn 19522  df-cnp 19523  df-lm 19524  df-haus 19610  df-tx 19826  df-hmeo 20019  df-fil 20110  df-fm 20202  df-flim 20203  df-flf 20204  df-xms 20586  df-ms 20587  df-tms 20588  df-cfil 21457  df-cau 21458  df-cmet 21459  df-grpo 24897  df-gid 24898  df-ginv 24899  df-gdiv 24900  df-ablo 24988  df-subgo 25008  df-vc 25143  df-nv 25189  df-va 25192  df-ba 25193  df-sm 25194  df-0v 25195  df-vs 25196  df-nmcv 25197  df-ims 25198  df-dip 25315  df-ssp 25339  df-ph 25432  df-cbn 25483  df-hnorm 25589  df-hba 25590  df-hvsub 25592  df-hlim 25593  df-hcau 25594  df-sh 25828  df-ch 25843  df-oc 25874  df-ch0 25875  df-shs 25930  df-span 25931  df-chj 25932  df-pjh 26017  df-cv 26902  df-at 26961
This theorem is referenced by:  sumdmdi  27043  dmdbr4ati  27044  dmdbr5ati  27045
  Copyright terms: Public domain W3C validator