HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  sumdmdii Structured version   Unicode version

Theorem sumdmdii 25964
Description: If the subspace sum of two Hilbert lattice elements is closed, then the elements are a dual modular pair. Remark in [MaedaMaeda] p. 139. (Contributed by NM, 12-Jul-2004.) (New usage is discouraged.)
Hypotheses
Ref Expression
sumdmdi.1  |-  A  e. 
CH
sumdmdi.2  |-  B  e. 
CH
Assertion
Ref Expression
sumdmdii  |-  ( ( A  +H  B )  =  ( A  vH  B )  ->  A  MH*  B )

Proof of Theorem sumdmdii
Dummy variables  x  y  z  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ineq2 3647 . . . . . . 7  |-  ( ( A  +H  B )  =  ( A  vH  B )  ->  (
x  i^i  ( A  +H  B ) )  =  ( x  i^i  ( A  vH  B ) ) )
21adantr 465 . . . . . 6  |-  ( ( ( A  +H  B
)  =  ( A  vH  B )  /\  ( x  e.  CH  /\  B  C_  x ) )  ->  ( x  i^i  ( A  +H  B
) )  =  ( x  i^i  ( A  vH  B ) ) )
3 elin 3640 . . . . . . . . 9  |-  ( y  e.  ( x  i^i  ( A  +H  B
) )  <->  ( y  e.  x  /\  y  e.  ( A  +H  B
) ) )
4 sumdmdi.1 . . . . . . . . . . . 12  |-  A  e. 
CH
5 sumdmdi.2 . . . . . . . . . . . 12  |-  B  e. 
CH
64, 5chseli 25007 . . . . . . . . . . 11  |-  ( y  e.  ( A  +H  B )  <->  E. z  e.  A  E. w  e.  B  y  =  ( z  +h  w
) )
7 ssel2 3452 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( B  C_  x  /\  w  e.  B )  ->  w  e.  x )
8 chsh 24772 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( x  e.  CH  ->  x  e.  SH )
9 shsubcl 24768 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( x  e.  SH  /\  y  e.  x  /\  w  e.  x )  ->  ( y  -h  w
)  e.  x )
1093exp 1187 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( x  e.  SH  ->  (
y  e.  x  -> 
( w  e.  x  ->  ( y  -h  w
)  e.  x ) ) )
118, 10syl 16 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( x  e.  CH  ->  (
y  e.  x  -> 
( w  e.  x  ->  ( y  -h  w
)  e.  x ) ) )
127, 11syl7 68 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( x  e.  CH  ->  (
y  e.  x  -> 
( ( B  C_  x  /\  w  e.  B
)  ->  ( y  -h  w )  e.  x
) ) )
1312exp4a 606 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( x  e.  CH  ->  (
y  e.  x  -> 
( B  C_  x  ->  ( w  e.  B  ->  ( y  -h  w
)  e.  x ) ) ) )
1413com23 78 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( x  e.  CH  ->  ( B  C_  x  ->  (
y  e.  x  -> 
( w  e.  B  ->  ( y  -h  w
)  e.  x ) ) ) )
1514imp41 593 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( x  e. 
CH  /\  B  C_  x
)  /\  y  e.  x )  /\  w  e.  B )  ->  (
y  -h  w )  e.  x )
1615adantlr 714 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ( x  e.  CH  /\  B  C_  x )  /\  y  e.  x )  /\  z  e.  A )  /\  w  e.  B )  ->  (
y  -h  w )  e.  x )
1716adantr 465 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( ( x  e.  CH  /\  B  C_  x )  /\  y  e.  x )  /\  z  e.  A
)  /\  w  e.  B )  /\  y  =  ( z  +h  w ) )  -> 
( y  -h  w
)  e.  x )
18 chel 24778 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( x  e.  CH  /\  y  e.  x )  ->  y  e.  ~H )
1918adantlr 714 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( x  e.  CH  /\  B  C_  x )  /\  y  e.  x
)  ->  y  e.  ~H )
204cheli 24780 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( z  e.  A  ->  z  e.  ~H )
215cheli 24780 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( w  e.  B  ->  w  e.  ~H )
22 hvsubadd 24624 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( y  e.  ~H  /\  w  e.  ~H  /\  z  e.  ~H )  ->  (
( y  -h  w
)  =  z  <->  ( w  +h  z )  =  y ) )
23 ax-hvcom 24548 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( w  e.  ~H  /\  z  e.  ~H )  ->  ( w  +h  z
)  =  ( z  +h  w ) )
2423eqeq1d 2453 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( w  e.  ~H  /\  z  e.  ~H )  ->  ( ( w  +h  z )  =  y  <-> 
( z  +h  w
)  =  y ) )
25 eqcom 2460 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( z  +h  w )  =  y  <->  y  =  ( z  +h  w
) )
2624, 25syl6bb 261 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( w  e.  ~H  /\  z  e.  ~H )  ->  ( ( w  +h  z )  =  y  <-> 
y  =  ( z  +h  w ) ) )
27263adant1 1006 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( y  e.  ~H  /\  w  e.  ~H  /\  z  e.  ~H )  ->  (
( w  +h  z
)  =  y  <->  y  =  ( z  +h  w
) ) )
2822, 27bitrd 253 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( y  e.  ~H  /\  w  e.  ~H  /\  z  e.  ~H )  ->  (
( y  -h  w
)  =  z  <->  y  =  ( z  +h  w
) ) )
29283com23 1194 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( y  e.  ~H  /\  z  e.  ~H  /\  w  e.  ~H )  ->  (
( y  -h  w
)  =  z  <->  y  =  ( z  +h  w
) ) )
3019, 20, 21, 29syl3an 1261 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( x  e. 
CH  /\  B  C_  x
)  /\  y  e.  x )  /\  z  e.  A  /\  w  e.  B )  ->  (
( y  -h  w
)  =  z  <->  y  =  ( z  +h  w
) ) )
31303expa 1188 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ( x  e.  CH  /\  B  C_  x )  /\  y  e.  x )  /\  z  e.  A )  /\  w  e.  B )  ->  (
( y  -h  w
)  =  z  <->  y  =  ( z  +h  w
) ) )
32 eleq1 2523 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( y  -h  w )  =  z  ->  (
( y  -h  w
)  e.  x  <->  z  e.  x ) )
3331, 32syl6bir 229 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ( x  e.  CH  /\  B  C_  x )  /\  y  e.  x )  /\  z  e.  A )  /\  w  e.  B )  ->  (
y  =  ( z  +h  w )  -> 
( ( y  -h  w )  e.  x  <->  z  e.  x ) ) )
3433imp 429 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( ( x  e.  CH  /\  B  C_  x )  /\  y  e.  x )  /\  z  e.  A
)  /\  w  e.  B )  /\  y  =  ( z  +h  w ) )  -> 
( ( y  -h  w )  e.  x  <->  z  e.  x ) )
3517, 34mpbid 210 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( ( x  e.  CH  /\  B  C_  x )  /\  y  e.  x )  /\  z  e.  A
)  /\  w  e.  B )  /\  y  =  ( z  +h  w ) )  -> 
z  e.  x )
36 simpr 461 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( ( x  e.  CH  /\  B  C_  x )  /\  y  e.  x )  /\  z  e.  A
)  /\  w  e.  B )  /\  y  =  ( z  +h  w ) )  -> 
y  =  ( z  +h  w ) )
3735, 36jca 532 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ( x  e.  CH  /\  B  C_  x )  /\  y  e.  x )  /\  z  e.  A
)  /\  w  e.  B )  /\  y  =  ( z  +h  w ) )  -> 
( z  e.  x  /\  y  =  (
z  +h  w ) ) )
3837exp31 604 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( x  e. 
CH  /\  B  C_  x
)  /\  y  e.  x )  /\  z  e.  A )  ->  (
w  e.  B  -> 
( y  =  ( z  +h  w )  ->  ( z  e.  x  /\  y  =  ( z  +h  w
) ) ) ) )
3938reximdvai 2925 . . . . . . . . . . . . . . 15  |-  ( ( ( ( x  e. 
CH  /\  B  C_  x
)  /\  y  e.  x )  /\  z  e.  A )  ->  ( E. w  e.  B  y  =  ( z  +h  w )  ->  E. w  e.  B  ( z  e.  x  /\  y  =  ( z  +h  w ) ) ) )
40 r19.42v 2974 . . . . . . . . . . . . . . 15  |-  ( E. w  e.  B  ( z  e.  x  /\  y  =  ( z  +h  w ) )  <->  ( z  e.  x  /\  E. w  e.  B  y  =  ( z  +h  w
) ) )
4139, 40syl6ib 226 . . . . . . . . . . . . . 14  |-  ( ( ( ( x  e. 
CH  /\  B  C_  x
)  /\  y  e.  x )  /\  z  e.  A )  ->  ( E. w  e.  B  y  =  ( z  +h  w )  ->  (
z  e.  x  /\  E. w  e.  B  y  =  ( z  +h  w ) ) ) )
4241reximdva 2927 . . . . . . . . . . . . 13  |-  ( ( ( x  e.  CH  /\  B  C_  x )  /\  y  e.  x
)  ->  ( E. z  e.  A  E. w  e.  B  y  =  ( z  +h  w )  ->  E. z  e.  A  ( z  e.  x  /\  E. w  e.  B  y  =  ( z  +h  w
) ) ) )
43 elin 3640 . . . . . . . . . . . . . . . . 17  |-  ( z  e.  ( x  i^i 
A )  <->  ( z  e.  x  /\  z  e.  A ) )
44 ancom 450 . . . . . . . . . . . . . . . . 17  |-  ( ( z  e.  x  /\  z  e.  A )  <->  ( z  e.  A  /\  z  e.  x )
)
4543, 44bitri 249 . . . . . . . . . . . . . . . 16  |-  ( z  e.  ( x  i^i 
A )  <->  ( z  e.  A  /\  z  e.  x ) )
4645anbi1i 695 . . . . . . . . . . . . . . 15  |-  ( ( z  e.  ( x  i^i  A )  /\  E. w  e.  B  y  =  ( z  +h  w ) )  <->  ( (
z  e.  A  /\  z  e.  x )  /\  E. w  e.  B  y  =  ( z  +h  w ) ) )
47 anass 649 . . . . . . . . . . . . . . 15  |-  ( ( ( z  e.  A  /\  z  e.  x
)  /\  E. w  e.  B  y  =  ( z  +h  w
) )  <->  ( z  e.  A  /\  (
z  e.  x  /\  E. w  e.  B  y  =  ( z  +h  w ) ) ) )
4846, 47bitri 249 . . . . . . . . . . . . . 14  |-  ( ( z  e.  ( x  i^i  A )  /\  E. w  e.  B  y  =  ( z  +h  w ) )  <->  ( z  e.  A  /\  (
z  e.  x  /\  E. w  e.  B  y  =  ( z  +h  w ) ) ) )
4948rexbii2 2858 . . . . . . . . . . . . 13  |-  ( E. z  e.  ( x  i^i  A ) E. w  e.  B  y  =  ( z  +h  w )  <->  E. z  e.  A  ( z  e.  x  /\  E. w  e.  B  y  =  ( z  +h  w
) ) )
5042, 49syl6ibr 227 . . . . . . . . . . . 12  |-  ( ( ( x  e.  CH  /\  B  C_  x )  /\  y  e.  x
)  ->  ( E. z  e.  A  E. w  e.  B  y  =  ( z  +h  w )  ->  E. z  e.  ( x  i^i  A
) E. w  e.  B  y  =  ( z  +h  w ) ) )
514chshii 24775 . . . . . . . . . . . . . . 15  |-  A  e.  SH
52 shincl 24929 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  SH  /\  A  e.  SH )  ->  ( x  i^i  A
)  e.  SH )
538, 51, 52sylancl 662 . . . . . . . . . . . . . 14  |-  ( x  e.  CH  ->  (
x  i^i  A )  e.  SH )
5453ad2antrr 725 . . . . . . . . . . . . 13  |-  ( ( ( x  e.  CH  /\  B  C_  x )  /\  y  e.  x
)  ->  ( x  i^i  A )  e.  SH )
555chshii 24775 . . . . . . . . . . . . 13  |-  B  e.  SH
56 shsel 24862 . . . . . . . . . . . . 13  |-  ( ( ( x  i^i  A
)  e.  SH  /\  B  e.  SH )  ->  ( y  e.  ( ( x  i^i  A
)  +H  B )  <->  E. z  e.  (
x  i^i  A ) E. w  e.  B  y  =  ( z  +h  w ) ) )
5754, 55, 56sylancl 662 . . . . . . . . . . . 12  |-  ( ( ( x  e.  CH  /\  B  C_  x )  /\  y  e.  x
)  ->  ( y  e.  ( ( x  i^i 
A )  +H  B
)  <->  E. z  e.  ( x  i^i  A ) E. w  e.  B  y  =  ( z  +h  w ) ) )
5850, 57sylibrd 234 . . . . . . . . . . 11  |-  ( ( ( x  e.  CH  /\  B  C_  x )  /\  y  e.  x
)  ->  ( E. z  e.  A  E. w  e.  B  y  =  ( z  +h  w )  ->  y  e.  ( ( x  i^i 
A )  +H  B
) ) )
596, 58syl5bi 217 . . . . . . . . . 10  |-  ( ( ( x  e.  CH  /\  B  C_  x )  /\  y  e.  x
)  ->  ( y  e.  ( A  +H  B
)  ->  y  e.  ( ( x  i^i 
A )  +H  B
) ) )
6059expimpd 603 . . . . . . . . 9  |-  ( ( x  e.  CH  /\  B  C_  x )  -> 
( ( y  e.  x  /\  y  e.  ( A  +H  B
) )  ->  y  e.  ( ( x  i^i 
A )  +H  B
) ) )
613, 60syl5bi 217 . . . . . . . 8  |-  ( ( x  e.  CH  /\  B  C_  x )  -> 
( y  e.  ( x  i^i  ( A  +H  B ) )  ->  y  e.  ( ( x  i^i  A
)  +H  B ) ) )
6261ssrdv 3463 . . . . . . 7  |-  ( ( x  e.  CH  /\  B  C_  x )  -> 
( x  i^i  ( A  +H  B ) ) 
C_  ( ( x  i^i  A )  +H  B ) )
6362adantl 466 . . . . . 6  |-  ( ( ( A  +H  B
)  =  ( A  vH  B )  /\  ( x  e.  CH  /\  B  C_  x ) )  ->  ( x  i^i  ( A  +H  B
) )  C_  (
( x  i^i  A
)  +H  B ) )
642, 63eqsstr3d 3492 . . . . 5  |-  ( ( ( A  +H  B
)  =  ( A  vH  B )  /\  ( x  e.  CH  /\  B  C_  x ) )  ->  ( x  i^i  ( A  vH  B
) )  C_  (
( x  i^i  A
)  +H  B ) )
65 chincl 25047 . . . . . . . 8  |-  ( ( x  e.  CH  /\  A  e.  CH )  ->  ( x  i^i  A
)  e.  CH )
664, 65mpan2 671 . . . . . . 7  |-  ( x  e.  CH  ->  (
x  i^i  A )  e.  CH )
67 chslej 25046 . . . . . . 7  |-  ( ( ( x  i^i  A
)  e.  CH  /\  B  e.  CH )  ->  ( ( x  i^i 
A )  +H  B
)  C_  ( (
x  i^i  A )  vH  B ) )
6866, 5, 67sylancl 662 . . . . . 6  |-  ( x  e.  CH  ->  (
( x  i^i  A
)  +H  B ) 
C_  ( ( x  i^i  A )  vH  B ) )
6968ad2antrl 727 . . . . 5  |-  ( ( ( A  +H  B
)  =  ( A  vH  B )  /\  ( x  e.  CH  /\  B  C_  x ) )  ->  ( ( x  i^i  A )  +H  B )  C_  (
( x  i^i  A
)  vH  B )
)
7064, 69sstrd 3467 . . . 4  |-  ( ( ( A  +H  B
)  =  ( A  vH  B )  /\  ( x  e.  CH  /\  B  C_  x ) )  ->  ( x  i^i  ( A  vH  B
) )  C_  (
( x  i^i  A
)  vH  B )
)
7170exp32 605 . . 3  |-  ( ( A  +H  B )  =  ( A  vH  B )  ->  (
x  e.  CH  ->  ( B  C_  x  ->  ( x  i^i  ( A  vH  B ) ) 
C_  ( ( x  i^i  A )  vH  B ) ) ) )
7271ralrimiv 2823 . 2  |-  ( ( A  +H  B )  =  ( A  vH  B )  ->  A. x  e.  CH  ( B  C_  x  ->  ( x  i^i  ( A  vH  B
) )  C_  (
( x  i^i  A
)  vH  B )
) )
73 dmdbr2 25852 . . 3  |-  ( ( A  e.  CH  /\  B  e.  CH )  ->  ( A  MH*  B  <->  A. x  e.  CH  ( B  C_  x  ->  (
x  i^i  ( A  vH  B ) )  C_  ( ( x  i^i 
A )  vH  B
) ) ) )
744, 5, 73mp2an 672 . 2  |-  ( A 
MH*  B  <->  A. x  e.  CH  ( B  C_  x  -> 
( x  i^i  ( A  vH  B ) ) 
C_  ( ( x  i^i  A )  vH  B ) ) )
7572, 74sylibr 212 1  |-  ( ( A  +H  B )  =  ( A  vH  B )  ->  A  MH*  B )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 965    = wceq 1370    e. wcel 1758   A.wral 2795   E.wrex 2796    i^i cin 3428    C_ wss 3429   class class class wbr 4393  (class class class)co 6193   ~Hchil 24466    +h cva 24467    -h cmv 24472   SHcsh 24475   CHcch 24476    +H cph 24478    vH chj 24480    MH* cdmd 24514
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1952  ax-ext 2430  ax-rep 4504  ax-sep 4514  ax-nul 4522  ax-pow 4571  ax-pr 4632  ax-un 6475  ax-inf2 7951  ax-cc 8708  ax-cnex 9442  ax-resscn 9443  ax-1cn 9444  ax-icn 9445  ax-addcl 9446  ax-addrcl 9447  ax-mulcl 9448  ax-mulrcl 9449  ax-mulcom 9450  ax-addass 9451  ax-mulass 9452  ax-distr 9453  ax-i2m1 9454  ax-1ne0 9455  ax-1rid 9456  ax-rnegex 9457  ax-rrecex 9458  ax-cnre 9459  ax-pre-lttri 9460  ax-pre-lttrn 9461  ax-pre-ltadd 9462  ax-pre-mulgt0 9463  ax-pre-sup 9464  ax-addf 9465  ax-mulf 9466  ax-hilex 24546  ax-hfvadd 24547  ax-hvcom 24548  ax-hvass 24549  ax-hv0cl 24550  ax-hvaddid 24551  ax-hfvmul 24552  ax-hvmulid 24553  ax-hvmulass 24554  ax-hvdistr1 24555  ax-hvdistr2 24556  ax-hvmul0 24557  ax-hfi 24626  ax-his1 24629  ax-his2 24630  ax-his3 24631  ax-his4 24632  ax-hcompl 24749
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1373  df-fal 1376  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2264  df-mo 2265  df-clab 2437  df-cleq 2443  df-clel 2446  df-nfc 2601  df-ne 2646  df-nel 2647  df-ral 2800  df-rex 2801  df-reu 2802  df-rmo 2803  df-rab 2804  df-v 3073  df-sbc 3288  df-csb 3390  df-dif 3432  df-un 3434  df-in 3436  df-ss 3443  df-pss 3445  df-nul 3739  df-if 3893  df-pw 3963  df-sn 3979  df-pr 3981  df-tp 3983  df-op 3985  df-uni 4193  df-int 4230  df-iun 4274  df-iin 4275  df-br 4394  df-opab 4452  df-mpt 4453  df-tr 4487  df-eprel 4733  df-id 4737  df-po 4742  df-so 4743  df-fr 4780  df-se 4781  df-we 4782  df-ord 4823  df-on 4824  df-lim 4825  df-suc 4826  df-xp 4947  df-rel 4948  df-cnv 4949  df-co 4950  df-dm 4951  df-rn 4952  df-res 4953  df-ima 4954  df-iota 5482  df-fun 5521  df-fn 5522  df-f 5523  df-f1 5524  df-fo 5525  df-f1o 5526  df-fv 5527  df-isom 5528  df-riota 6154  df-ov 6196  df-oprab 6197  df-mpt2 6198  df-of 6423  df-om 6580  df-1st 6680  df-2nd 6681  df-supp 6794  df-recs 6935  df-rdg 6969  df-1o 7023  df-2o 7024  df-oadd 7027  df-omul 7028  df-er 7204  df-map 7319  df-pm 7320  df-ixp 7367  df-en 7414  df-dom 7415  df-sdom 7416  df-fin 7417  df-fsupp 7725  df-fi 7765  df-sup 7795  df-oi 7828  df-card 8213  df-acn 8216  df-cda 8441  df-pnf 9524  df-mnf 9525  df-xr 9526  df-ltxr 9527  df-le 9528  df-sub 9701  df-neg 9702  df-div 10098  df-nn 10427  df-2 10484  df-3 10485  df-4 10486  df-5 10487  df-6 10488  df-7 10489  df-8 10490  df-9 10491  df-10 10492  df-n0 10684  df-z 10751  df-dec 10860  df-uz 10966  df-q 11058  df-rp 11096  df-xneg 11193  df-xadd 11194  df-xmul 11195  df-ioo 11408  df-ico 11410  df-icc 11411  df-fz 11548  df-fzo 11659  df-fl 11752  df-seq 11917  df-exp 11976  df-hash 12214  df-cj 12699  df-re 12700  df-im 12701  df-sqr 12835  df-abs 12836  df-clim 13077  df-rlim 13078  df-sum 13275  df-struct 14287  df-ndx 14288  df-slot 14289  df-base 14290  df-sets 14291  df-ress 14292  df-plusg 14362  df-mulr 14363  df-starv 14364  df-sca 14365  df-vsca 14366  df-ip 14367  df-tset 14368  df-ple 14369  df-ds 14371  df-unif 14372  df-hom 14373  df-cco 14374  df-rest 14472  df-topn 14473  df-0g 14491  df-gsum 14492  df-topgen 14493  df-pt 14494  df-prds 14497  df-xrs 14551  df-qtop 14556  df-imas 14557  df-xps 14559  df-mre 14635  df-mrc 14636  df-acs 14638  df-mnd 15526  df-submnd 15576  df-mulg 15659  df-cntz 15946  df-cmn 16392  df-psmet 17927  df-xmet 17928  df-met 17929  df-bl 17930  df-mopn 17931  df-fbas 17932  df-fg 17933  df-cnfld 17937  df-top 18628  df-bases 18630  df-topon 18631  df-topsp 18632  df-cld 18748  df-ntr 18749  df-cls 18750  df-nei 18827  df-cn 18956  df-cnp 18957  df-lm 18958  df-haus 19044  df-tx 19260  df-hmeo 19453  df-fil 19544  df-fm 19636  df-flim 19637  df-flf 19638  df-xms 20020  df-ms 20021  df-tms 20022  df-cfil 20891  df-cau 20892  df-cmet 20893  df-grpo 23823  df-gid 23824  df-ginv 23825  df-gdiv 23826  df-ablo 23914  df-subgo 23934  df-vc 24069  df-nv 24115  df-va 24118  df-ba 24119  df-sm 24120  df-0v 24121  df-vs 24122  df-nmcv 24123  df-ims 24124  df-dip 24241  df-ssp 24265  df-ph 24358  df-cbn 24409  df-hnorm 24515  df-hba 24516  df-hvsub 24518  df-hlim 24519  df-hcau 24520  df-sh 24754  df-ch 24769  df-oc 24800  df-ch0 24801  df-shs 24856  df-chj 24858  df-dmd 25830
This theorem is referenced by:  cmmdi  25965  sumdmdi  25969
  Copyright terms: Public domain W3C validator