MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sumdchr2 Structured version   Unicode version

Theorem sumdchr2 22584
Description: Lemma for sumdchr 22586. (Contributed by Mario Carneiro, 28-Apr-2016.)
Hypotheses
Ref Expression
sumdchr.g  |-  G  =  (DChr `  N )
sumdchr.d  |-  D  =  ( Base `  G
)
sumdchr2.z  |-  Z  =  (ℤ/n `  N )
sumdchr2.1  |-  .1.  =  ( 1r `  Z )
sumdchr2.b  |-  B  =  ( Base `  Z
)
sumdchr2.n  |-  ( ph  ->  N  e.  NN )
sumdchr2.x  |-  ( ph  ->  A  e.  B )
Assertion
Ref Expression
sumdchr2  |-  ( ph  -> 
sum_ x  e.  D  ( x `  A
)  =  if ( A  =  .1.  , 
( # `  D ) ,  0 ) )
Distinct variable groups:    x,  .1.    x, A    x, D    x, N    x, G    ph, x
Allowed substitution hints:    B( x)    Z( x)

Proof of Theorem sumdchr2
Dummy variables  y 
z  a  b are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqeq2 2447 . 2  |-  ( (
# `  D )  =  if ( A  =  .1.  ,  ( # `  D ) ,  0 )  ->  ( sum_ x  e.  D  ( x `
 A )  =  ( # `  D
)  <->  sum_ x  e.  D  ( x `  A
)  =  if ( A  =  .1.  , 
( # `  D ) ,  0 ) ) )
2 eqeq2 2447 . 2  |-  ( 0  =  if ( A  =  .1.  ,  (
# `  D ) ,  0 )  -> 
( sum_ x  e.  D  ( x `  A
)  =  0  <->  sum_ x  e.  D  ( x `
 A )  =  if ( A  =  .1.  ,  ( # `  D ) ,  0 ) ) )
3 fveq2 5686 . . . . . 6  |-  ( A  =  .1.  ->  (
x `  A )  =  ( x `  .1.  ) )
4 sumdchr.g . . . . . . . . 9  |-  G  =  (DChr `  N )
5 sumdchr2.z . . . . . . . . 9  |-  Z  =  (ℤ/n `  N )
6 sumdchr.d . . . . . . . . 9  |-  D  =  ( Base `  G
)
74, 5, 6dchrmhm 22555 . . . . . . . 8  |-  D  C_  ( (mulGrp `  Z ) MndHom  (mulGrp ` fld ) )
8 simpr 461 . . . . . . . 8  |-  ( (
ph  /\  x  e.  D )  ->  x  e.  D )
97, 8sseldi 3349 . . . . . . 7  |-  ( (
ph  /\  x  e.  D )  ->  x  e.  ( (mulGrp `  Z
) MndHom  (mulGrp ` fld ) ) )
10 eqid 2438 . . . . . . . . 9  |-  (mulGrp `  Z )  =  (mulGrp `  Z )
11 sumdchr2.1 . . . . . . . . 9  |-  .1.  =  ( 1r `  Z )
1210, 11rngidval 16593 . . . . . . . 8  |-  .1.  =  ( 0g `  (mulGrp `  Z ) )
13 eqid 2438 . . . . . . . . 9  |-  (mulGrp ` fld )  =  (mulGrp ` fld )
14 cnfld1 17816 . . . . . . . . 9  |-  1  =  ( 1r ` fld )
1513, 14rngidval 16593 . . . . . . . 8  |-  1  =  ( 0g `  (mulGrp ` fld ) )
1612, 15mhm0 15464 . . . . . . 7  |-  ( x  e.  ( (mulGrp `  Z ) MndHom  (mulGrp ` fld ) )  ->  (
x `  .1.  )  =  1 )
179, 16syl 16 . . . . . 6  |-  ( (
ph  /\  x  e.  D )  ->  (
x `  .1.  )  =  1 )
183, 17sylan9eqr 2492 . . . . 5  |-  ( ( ( ph  /\  x  e.  D )  /\  A  =  .1.  )  ->  (
x `  A )  =  1 )
1918an32s 802 . . . 4  |-  ( ( ( ph  /\  A  =  .1.  )  /\  x  e.  D )  ->  (
x `  A )  =  1 )
2019sumeq2dv 13172 . . 3  |-  ( (
ph  /\  A  =  .1.  )  ->  sum_ x  e.  D  ( x `  A )  =  sum_ x  e.  D  1 )
21 sumdchr2.n . . . . . . 7  |-  ( ph  ->  N  e.  NN )
224, 6dchrfi 22569 . . . . . . 7  |-  ( N  e.  NN  ->  D  e.  Fin )
2321, 22syl 16 . . . . . 6  |-  ( ph  ->  D  e.  Fin )
24 ax-1cn 9332 . . . . . 6  |-  1  e.  CC
25 fsumconst 13249 . . . . . 6  |-  ( ( D  e.  Fin  /\  1  e.  CC )  -> 
sum_ x  e.  D 
1  =  ( (
# `  D )  x.  1 ) )
2623, 24, 25sylancl 662 . . . . 5  |-  ( ph  -> 
sum_ x  e.  D 
1  =  ( (
# `  D )  x.  1 ) )
27 hashcl 12118 . . . . . . . 8  |-  ( D  e.  Fin  ->  ( # `
 D )  e. 
NN0 )
2821, 22, 273syl 20 . . . . . . 7  |-  ( ph  ->  ( # `  D
)  e.  NN0 )
2928nn0cnd 10630 . . . . . 6  |-  ( ph  ->  ( # `  D
)  e.  CC )
3029mulid1d 9395 . . . . 5  |-  ( ph  ->  ( ( # `  D
)  x.  1 )  =  ( # `  D
) )
3126, 30eqtrd 2470 . . . 4  |-  ( ph  -> 
sum_ x  e.  D 
1  =  ( # `  D ) )
3231adantr 465 . . 3  |-  ( (
ph  /\  A  =  .1.  )  ->  sum_ x  e.  D  1  =  ( # `  D ) )
3320, 32eqtrd 2470 . 2  |-  ( (
ph  /\  A  =  .1.  )  ->  sum_ x  e.  D  ( x `  A )  =  (
# `  D )
)
34 df-ne 2603 . . 3  |-  ( A  =/=  .1.  <->  -.  A  =  .1.  )
35 sumdchr2.b . . . . 5  |-  B  =  ( Base `  Z
)
3621adantr 465 . . . . 5  |-  ( (
ph  /\  A  =/=  .1.  )  ->  N  e.  NN )
37 simpr 461 . . . . 5  |-  ( (
ph  /\  A  =/=  .1.  )  ->  A  =/= 
.1.  )
38 sumdchr2.x . . . . . 6  |-  ( ph  ->  A  e.  B )
3938adantr 465 . . . . 5  |-  ( (
ph  /\  A  =/=  .1.  )  ->  A  e.  B )
404, 5, 6, 35, 11, 36, 37, 39dchrpt 22581 . . . 4  |-  ( (
ph  /\  A  =/=  .1.  )  ->  E. y  e.  D  ( y `  A )  =/=  1
)
4136adantr 465 . . . . . . 7  |-  ( ( ( ph  /\  A  =/=  .1.  )  /\  (
y  e.  D  /\  ( y `  A
)  =/=  1 ) )  ->  N  e.  NN )
4241, 22syl 16 . . . . . 6  |-  ( ( ( ph  /\  A  =/=  .1.  )  /\  (
y  e.  D  /\  ( y `  A
)  =/=  1 ) )  ->  D  e.  Fin )
43 simpr 461 . . . . . . . 8  |-  ( ( ( ( ph  /\  A  =/=  .1.  )  /\  ( y  e.  D  /\  ( y `  A
)  =/=  1 ) )  /\  x  e.  D )  ->  x  e.  D )
444, 5, 6, 35, 43dchrf 22556 . . . . . . 7  |-  ( ( ( ( ph  /\  A  =/=  .1.  )  /\  ( y  e.  D  /\  ( y `  A
)  =/=  1 ) )  /\  x  e.  D )  ->  x : B --> CC )
4539adantr 465 . . . . . . . 8  |-  ( ( ( ph  /\  A  =/=  .1.  )  /\  (
y  e.  D  /\  ( y `  A
)  =/=  1 ) )  ->  A  e.  B )
4645adantr 465 . . . . . . 7  |-  ( ( ( ( ph  /\  A  =/=  .1.  )  /\  ( y  e.  D  /\  ( y `  A
)  =/=  1 ) )  /\  x  e.  D )  ->  A  e.  B )
4744, 46ffvelrnd 5839 . . . . . 6  |-  ( ( ( ( ph  /\  A  =/=  .1.  )  /\  ( y  e.  D  /\  ( y `  A
)  =/=  1 ) )  /\  x  e.  D )  ->  (
x `  A )  e.  CC )
4842, 47fsumcl 13202 . . . . 5  |-  ( ( ( ph  /\  A  =/=  .1.  )  /\  (
y  e.  D  /\  ( y `  A
)  =/=  1 ) )  ->  sum_ x  e.  D  ( x `  A )  e.  CC )
49 0cnd 9371 . . . . 5  |-  ( ( ( ph  /\  A  =/=  .1.  )  /\  (
y  e.  D  /\  ( y `  A
)  =/=  1 ) )  ->  0  e.  CC )
50 simprl 755 . . . . . . . 8  |-  ( ( ( ph  /\  A  =/=  .1.  )  /\  (
y  e.  D  /\  ( y `  A
)  =/=  1 ) )  ->  y  e.  D )
514, 5, 6, 35, 50dchrf 22556 . . . . . . 7  |-  ( ( ( ph  /\  A  =/=  .1.  )  /\  (
y  e.  D  /\  ( y `  A
)  =/=  1 ) )  ->  y : B
--> CC )
5251, 45ffvelrnd 5839 . . . . . 6  |-  ( ( ( ph  /\  A  =/=  .1.  )  /\  (
y  e.  D  /\  ( y `  A
)  =/=  1 ) )  ->  ( y `  A )  e.  CC )
53 subcl 9601 . . . . . 6  |-  ( ( ( y `  A
)  e.  CC  /\  1  e.  CC )  ->  ( ( y `  A )  -  1 )  e.  CC )
5452, 24, 53sylancl 662 . . . . 5  |-  ( ( ( ph  /\  A  =/=  .1.  )  /\  (
y  e.  D  /\  ( y `  A
)  =/=  1 ) )  ->  ( (
y `  A )  -  1 )  e.  CC )
55 simprr 756 . . . . . 6  |-  ( ( ( ph  /\  A  =/=  .1.  )  /\  (
y  e.  D  /\  ( y `  A
)  =/=  1 ) )  ->  ( y `  A )  =/=  1
)
56 subeq0 9627 . . . . . . . 8  |-  ( ( ( y `  A
)  e.  CC  /\  1  e.  CC )  ->  ( ( ( y `
 A )  - 
1 )  =  0  <-> 
( y `  A
)  =  1 ) )
5752, 24, 56sylancl 662 . . . . . . 7  |-  ( ( ( ph  /\  A  =/=  .1.  )  /\  (
y  e.  D  /\  ( y `  A
)  =/=  1 ) )  ->  ( (
( y `  A
)  -  1 )  =  0  <->  ( y `  A )  =  1 ) )
5857necon3bid 2638 . . . . . 6  |-  ( ( ( ph  /\  A  =/=  .1.  )  /\  (
y  e.  D  /\  ( y `  A
)  =/=  1 ) )  ->  ( (
( y `  A
)  -  1 )  =/=  0  <->  ( y `  A )  =/=  1
) )
5955, 58mpbird 232 . . . . 5  |-  ( ( ( ph  /\  A  =/=  .1.  )  /\  (
y  e.  D  /\  ( y `  A
)  =/=  1 ) )  ->  ( (
y `  A )  -  1 )  =/=  0 )
60 oveq2 6094 . . . . . . . . . . . 12  |-  ( z  =  x  ->  (
y ( +g  `  G
) z )  =  ( y ( +g  `  G ) x ) )
6160fveq1d 5688 . . . . . . . . . . 11  |-  ( z  =  x  ->  (
( y ( +g  `  G ) z ) `
 A )  =  ( ( y ( +g  `  G ) x ) `  A
) )
6261cbvsumv 13165 . . . . . . . . . 10  |-  sum_ z  e.  D  ( (
y ( +g  `  G
) z ) `  A )  =  sum_ x  e.  D  ( ( y ( +g  `  G
) x ) `  A )
63 eqid 2438 . . . . . . . . . . . . . 14  |-  ( +g  `  G )  =  ( +g  `  G )
6450adantr 465 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  A  =/=  .1.  )  /\  ( y  e.  D  /\  ( y `  A
)  =/=  1 ) )  /\  x  e.  D )  ->  y  e.  D )
654, 5, 6, 63, 64, 43dchrmul 22562 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  A  =/=  .1.  )  /\  ( y  e.  D  /\  ( y `  A
)  =/=  1 ) )  /\  x  e.  D )  ->  (
y ( +g  `  G
) x )  =  ( y  oF  x.  x ) )
6665fveq1d 5688 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  A  =/=  .1.  )  /\  ( y  e.  D  /\  ( y `  A
)  =/=  1 ) )  /\  x  e.  D )  ->  (
( y ( +g  `  G ) x ) `
 A )  =  ( ( y  oF  x.  x ) `
 A ) )
6751adantr 465 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  A  =/=  .1.  )  /\  ( y  e.  D  /\  ( y `  A
)  =/=  1 ) )  /\  x  e.  D )  ->  y : B --> CC )
68 ffn 5554 . . . . . . . . . . . . . 14  |-  ( y : B --> CC  ->  y  Fn  B )
6967, 68syl 16 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  A  =/=  .1.  )  /\  ( y  e.  D  /\  ( y `  A
)  =/=  1 ) )  /\  x  e.  D )  ->  y  Fn  B )
70 ffn 5554 . . . . . . . . . . . . . 14  |-  ( x : B --> CC  ->  x  Fn  B )
7144, 70syl 16 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  A  =/=  .1.  )  /\  ( y  e.  D  /\  ( y `  A
)  =/=  1 ) )  /\  x  e.  D )  ->  x  Fn  B )
72 fvex 5696 . . . . . . . . . . . . . . 15  |-  ( Base `  Z )  e.  _V
7335, 72eqeltri 2508 . . . . . . . . . . . . . 14  |-  B  e. 
_V
7473a1i 11 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  A  =/=  .1.  )  /\  ( y  e.  D  /\  ( y `  A
)  =/=  1 ) )  /\  x  e.  D )  ->  B  e.  _V )
75 fnfvof 6328 . . . . . . . . . . . . 13  |-  ( ( ( y  Fn  B  /\  x  Fn  B
)  /\  ( B  e.  _V  /\  A  e.  B ) )  -> 
( ( y  oF  x.  x ) `
 A )  =  ( ( y `  A )  x.  (
x `  A )
) )
7669, 71, 74, 46, 75syl22anc 1219 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  A  =/=  .1.  )  /\  ( y  e.  D  /\  ( y `  A
)  =/=  1 ) )  /\  x  e.  D )  ->  (
( y  oF  x.  x ) `  A )  =  ( ( y `  A
)  x.  ( x `
 A ) ) )
7766, 76eqtrd 2470 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  A  =/=  .1.  )  /\  ( y  e.  D  /\  ( y `  A
)  =/=  1 ) )  /\  x  e.  D )  ->  (
( y ( +g  `  G ) x ) `
 A )  =  ( ( y `  A )  x.  (
x `  A )
) )
7877sumeq2dv 13172 . . . . . . . . . 10  |-  ( ( ( ph  /\  A  =/=  .1.  )  /\  (
y  e.  D  /\  ( y `  A
)  =/=  1 ) )  ->  sum_ x  e.  D  ( ( y ( +g  `  G
) x ) `  A )  =  sum_ x  e.  D  ( ( y `  A )  x.  ( x `  A ) ) )
7962, 78syl5eq 2482 . . . . . . . . 9  |-  ( ( ( ph  /\  A  =/=  .1.  )  /\  (
y  e.  D  /\  ( y `  A
)  =/=  1 ) )  ->  sum_ z  e.  D  ( ( y ( +g  `  G
) z ) `  A )  =  sum_ x  e.  D  ( ( y `  A )  x.  ( x `  A ) ) )
80 fveq1 5685 . . . . . . . . . 10  |-  ( x  =  ( y ( +g  `  G ) z )  ->  (
x `  A )  =  ( ( y ( +g  `  G
) z ) `  A ) )
814dchrabl 22568 . . . . . . . . . . . 12  |-  ( N  e.  NN  ->  G  e.  Abel )
82 ablgrp 16273 . . . . . . . . . . . 12  |-  ( G  e.  Abel  ->  G  e. 
Grp )
8341, 81, 823syl 20 . . . . . . . . . . 11  |-  ( ( ( ph  /\  A  =/=  .1.  )  /\  (
y  e.  D  /\  ( y `  A
)  =/=  1 ) )  ->  G  e.  Grp )
84 eqid 2438 . . . . . . . . . . . 12  |-  ( a  e.  D  |->  ( b  e.  D  |->  ( a ( +g  `  G
) b ) ) )  =  ( a  e.  D  |->  ( b  e.  D  |->  ( a ( +g  `  G
) b ) ) )
8584, 6, 63grplactf1o 15616 . . . . . . . . . . 11  |-  ( ( G  e.  Grp  /\  y  e.  D )  ->  ( ( a  e.  D  |->  ( b  e.  D  |->  ( a ( +g  `  G ) b ) ) ) `
 y ) : D -1-1-onto-> D )
8683, 50, 85syl2anc 661 . . . . . . . . . 10  |-  ( ( ( ph  /\  A  =/=  .1.  )  /\  (
y  e.  D  /\  ( y `  A
)  =/=  1 ) )  ->  ( (
a  e.  D  |->  ( b  e.  D  |->  ( a ( +g  `  G
) b ) ) ) `  y ) : D -1-1-onto-> D )
8784, 6grplactval 15614 . . . . . . . . . . 11  |-  ( ( y  e.  D  /\  z  e.  D )  ->  ( ( ( a  e.  D  |->  ( b  e.  D  |->  ( a ( +g  `  G
) b ) ) ) `  y ) `
 z )  =  ( y ( +g  `  G ) z ) )
8850, 87sylan 471 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  A  =/=  .1.  )  /\  ( y  e.  D  /\  ( y `  A
)  =/=  1 ) )  /\  z  e.  D )  ->  (
( ( a  e.  D  |->  ( b  e.  D  |->  ( a ( +g  `  G ) b ) ) ) `
 y ) `  z )  =  ( y ( +g  `  G
) z ) )
8980, 42, 86, 88, 47fsumf1o 13192 . . . . . . . . 9  |-  ( ( ( ph  /\  A  =/=  .1.  )  /\  (
y  e.  D  /\  ( y `  A
)  =/=  1 ) )  ->  sum_ x  e.  D  ( x `  A )  =  sum_ z  e.  D  (
( y ( +g  `  G ) z ) `
 A ) )
9042, 52, 47fsummulc2 13243 . . . . . . . . 9  |-  ( ( ( ph  /\  A  =/=  .1.  )  /\  (
y  e.  D  /\  ( y `  A
)  =/=  1 ) )  ->  ( (
y `  A )  x.  sum_ x  e.  D  ( x `  A
) )  =  sum_ x  e.  D  ( ( y `  A )  x.  ( x `  A ) ) )
9179, 89, 903eqtr4rd 2481 . . . . . . . 8  |-  ( ( ( ph  /\  A  =/=  .1.  )  /\  (
y  e.  D  /\  ( y `  A
)  =/=  1 ) )  ->  ( (
y `  A )  x.  sum_ x  e.  D  ( x `  A
) )  =  sum_ x  e.  D  ( x `
 A ) )
9248mulid2d 9396 . . . . . . . 8  |-  ( ( ( ph  /\  A  =/=  .1.  )  /\  (
y  e.  D  /\  ( y `  A
)  =/=  1 ) )  ->  ( 1  x.  sum_ x  e.  D  ( x `  A
) )  =  sum_ x  e.  D  ( x `
 A ) )
9391, 92oveq12d 6104 . . . . . . 7  |-  ( ( ( ph  /\  A  =/=  .1.  )  /\  (
y  e.  D  /\  ( y `  A
)  =/=  1 ) )  ->  ( (
( y `  A
)  x.  sum_ x  e.  D  ( x `  A ) )  -  ( 1  x.  sum_ x  e.  D  ( x `
 A ) ) )  =  ( sum_ x  e.  D  ( x `
 A )  -  sum_ x  e.  D  ( x `  A ) ) )
9448subidd 9699 . . . . . . 7  |-  ( ( ( ph  /\  A  =/=  .1.  )  /\  (
y  e.  D  /\  ( y `  A
)  =/=  1 ) )  ->  ( sum_ x  e.  D  ( x `
 A )  -  sum_ x  e.  D  ( x `  A ) )  =  0 )
9593, 94eqtrd 2470 . . . . . 6  |-  ( ( ( ph  /\  A  =/=  .1.  )  /\  (
y  e.  D  /\  ( y `  A
)  =/=  1 ) )  ->  ( (
( y `  A
)  x.  sum_ x  e.  D  ( x `  A ) )  -  ( 1  x.  sum_ x  e.  D  ( x `
 A ) ) )  =  0 )
9624a1i 11 . . . . . . 7  |-  ( ( ( ph  /\  A  =/=  .1.  )  /\  (
y  e.  D  /\  ( y `  A
)  =/=  1 ) )  ->  1  e.  CC )
9752, 96, 48subdird 9793 . . . . . 6  |-  ( ( ( ph  /\  A  =/=  .1.  )  /\  (
y  e.  D  /\  ( y `  A
)  =/=  1 ) )  ->  ( (
( y `  A
)  -  1 )  x.  sum_ x  e.  D  ( x `  A
) )  =  ( ( ( y `  A )  x.  sum_ x  e.  D  ( x `
 A ) )  -  ( 1  x. 
sum_ x  e.  D  ( x `  A
) ) ) )
9854mul01d 9560 . . . . . 6  |-  ( ( ( ph  /\  A  =/=  .1.  )  /\  (
y  e.  D  /\  ( y `  A
)  =/=  1 ) )  ->  ( (
( y `  A
)  -  1 )  x.  0 )  =  0 )
9995, 97, 983eqtr4d 2480 . . . . 5  |-  ( ( ( ph  /\  A  =/=  .1.  )  /\  (
y  e.  D  /\  ( y `  A
)  =/=  1 ) )  ->  ( (
( y `  A
)  -  1 )  x.  sum_ x  e.  D  ( x `  A
) )  =  ( ( ( y `  A )  -  1 )  x.  0 ) )
10048, 49, 54, 59, 99mulcanad 9963 . . . 4  |-  ( ( ( ph  /\  A  =/=  .1.  )  /\  (
y  e.  D  /\  ( y `  A
)  =/=  1 ) )  ->  sum_ x  e.  D  ( x `  A )  =  0 )
10140, 100rexlimddv 2840 . . 3  |-  ( (
ph  /\  A  =/=  .1.  )  ->  sum_ x  e.  D  ( x `  A )  =  0 )
10234, 101sylan2br 476 . 2  |-  ( (
ph  /\  -.  A  =  .1.  )  ->  sum_ x  e.  D  ( x `  A )  =  0 )
1031, 2, 33, 102ifbothda 3819 1  |-  ( ph  -> 
sum_ x  e.  D  ( x `  A
)  =  if ( A  =  .1.  , 
( # `  D ) ,  0 ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1369    e. wcel 1756    =/= wne 2601   _Vcvv 2967   ifcif 3786    e. cmpt 4345    Fn wfn 5408   -->wf 5409   -1-1-onto->wf1o 5412   ` cfv 5413  (class class class)co 6086    oFcof 6313   Fincfn 7302   CCcc 9272   0cc0 9274   1c1 9275    x. cmul 9279    - cmin 9587   NNcn 10314   NN0cn0 10571   #chash 12095   sum_csu 13155   Basecbs 14166   +g cplusg 14230   Grpcgrp 15402   MndHom cmhm 15454   Abelcabel 16269  mulGrpcmgp 16579   1rcur 16591  ℂfldccnfld 17793  ℤ/nczn 17909  DChrcdchr 22546
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2419  ax-rep 4398  ax-sep 4408  ax-nul 4416  ax-pow 4465  ax-pr 4526  ax-un 6367  ax-inf2 7839  ax-cnex 9330  ax-resscn 9331  ax-1cn 9332  ax-icn 9333  ax-addcl 9334  ax-addrcl 9335  ax-mulcl 9336  ax-mulrcl 9337  ax-mulcom 9338  ax-addass 9339  ax-mulass 9340  ax-distr 9341  ax-i2m1 9342  ax-1ne0 9343  ax-1rid 9344  ax-rnegex 9345  ax-rrecex 9346  ax-cnre 9347  ax-pre-lttri 9348  ax-pre-lttrn 9349  ax-pre-ltadd 9350  ax-pre-mulgt0 9351  ax-pre-sup 9352  ax-addf 9353  ax-mulf 9354
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-fal 1375  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2256  df-mo 2257  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-nel 2604  df-ral 2715  df-rex 2716  df-reu 2717  df-rmo 2718  df-rab 2719  df-v 2969  df-sbc 3182  df-csb 3284  df-dif 3326  df-un 3328  df-in 3330  df-ss 3337  df-pss 3339  df-nul 3633  df-if 3787  df-pw 3857  df-sn 3873  df-pr 3875  df-tp 3877  df-op 3879  df-uni 4087  df-int 4124  df-iun 4168  df-iin 4169  df-disj 4258  df-br 4288  df-opab 4346  df-mpt 4347  df-tr 4381  df-eprel 4627  df-id 4631  df-po 4636  df-so 4637  df-fr 4674  df-se 4675  df-we 4676  df-ord 4717  df-on 4718  df-lim 4719  df-suc 4720  df-xp 4841  df-rel 4842  df-cnv 4843  df-co 4844  df-dm 4845  df-rn 4846  df-res 4847  df-ima 4848  df-iota 5376  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-isom 5422  df-riota 6047  df-ov 6089  df-oprab 6090  df-mpt2 6091  df-of 6315  df-rpss 6355  df-om 6472  df-1st 6572  df-2nd 6573  df-supp 6686  df-tpos 6740  df-recs 6824  df-rdg 6858  df-1o 6912  df-2o 6913  df-oadd 6916  df-omul 6917  df-er 7093  df-ec 7095  df-qs 7099  df-map 7208  df-pm 7209  df-ixp 7256  df-en 7303  df-dom 7304  df-sdom 7305  df-fin 7306  df-fsupp 7613  df-fi 7653  df-sup 7683  df-oi 7716  df-card 8101  df-acn 8104  df-cda 8329  df-pnf 9412  df-mnf 9413  df-xr 9414  df-ltxr 9415  df-le 9416  df-sub 9589  df-neg 9590  df-div 9986  df-nn 10315  df-2 10372  df-3 10373  df-4 10374  df-5 10375  df-6 10376  df-7 10377  df-8 10378  df-9 10379  df-10 10380  df-n0 10572  df-z 10639  df-dec 10748  df-uz 10854  df-q 10946  df-rp 10984  df-xneg 11081  df-xadd 11082  df-xmul 11083  df-ioo 11296  df-ioc 11297  df-ico 11298  df-icc 11299  df-fz 11430  df-fzo 11541  df-fl 11634  df-mod 11701  df-seq 11799  df-exp 11858  df-fac 12044  df-bc 12071  df-hash 12096  df-word 12221  df-concat 12223  df-s1 12224  df-shft 12548  df-cj 12580  df-re 12581  df-im 12582  df-sqr 12716  df-abs 12717  df-limsup 12941  df-clim 12958  df-rlim 12959  df-sum 13156  df-ef 13345  df-sin 13347  df-cos 13348  df-pi 13350  df-dvds 13528  df-gcd 13683  df-prm 13756  df-phi 13833  df-pc 13896  df-struct 14168  df-ndx 14169  df-slot 14170  df-base 14171  df-sets 14172  df-ress 14173  df-plusg 14243  df-mulr 14244  df-starv 14245  df-sca 14246  df-vsca 14247  df-ip 14248  df-tset 14249  df-ple 14250  df-ds 14252  df-unif 14253  df-hom 14254  df-cco 14255  df-rest 14353  df-topn 14354  df-0g 14372  df-gsum 14373  df-topgen 14374  df-pt 14375  df-prds 14378  df-xrs 14432  df-qtop 14437  df-imas 14438  df-divs 14439  df-xps 14440  df-mre 14516  df-mrc 14517  df-acs 14519  df-mnd 15407  df-mhm 15456  df-submnd 15457  df-grp 15536  df-minusg 15537  df-sbg 15538  df-mulg 15539  df-subg 15669  df-nsg 15670  df-eqg 15671  df-ghm 15736  df-gim 15778  df-ga 15799  df-cntz 15826  df-oppg 15852  df-od 16023  df-gex 16024  df-pgp 16025  df-lsm 16126  df-pj1 16127  df-cmn 16270  df-abl 16271  df-cyg 16346  df-dprd 16465  df-dpj 16466  df-mgp 16580  df-ur 16592  df-rng 16635  df-cring 16636  df-oppr 16703  df-dvdsr 16721  df-unit 16722  df-invr 16752  df-rnghom 16794  df-subrg 16841  df-lmod 16928  df-lss 16991  df-lsp 17030  df-sra 17230  df-rgmod 17231  df-lidl 17232  df-rsp 17233  df-2idl 17291  df-psmet 17784  df-xmet 17785  df-met 17786  df-bl 17787  df-mopn 17788  df-fbas 17789  df-fg 17790  df-cnfld 17794  df-zring 17859  df-zrh 17910  df-zn 17913  df-top 18478  df-bases 18480  df-topon 18481  df-topsp 18482  df-cld 18598  df-ntr 18599  df-cls 18600  df-nei 18677  df-lp 18715  df-perf 18716  df-cn 18806  df-cnp 18807  df-haus 18894  df-tx 19110  df-hmeo 19303  df-fil 19394  df-fm 19486  df-flim 19487  df-flf 19488  df-xms 19870  df-ms 19871  df-tms 19872  df-cncf 20429  df-0p 21123  df-limc 21316  df-dv 21317  df-ply 21631  df-idp 21632  df-coe 21633  df-dgr 21634  df-quot 21732  df-log 21983  df-cxp 21984  df-dchr 22547
This theorem is referenced by:  dchrhash  22585  sumdchr  22586
  Copyright terms: Public domain W3C validator