Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  suctrALTcfVD Structured version   Unicode version

Theorem suctrALTcfVD 34124
Description: The following User's Proof is a Virtual Deduction proof (see wvd1 33740) using conjunction-form virtual hypothesis collections. The conjunction-form version of completeusersproof.cmd. It allows the User to avoid superflous virtual hypotheses. This proof was completed automatically by a tools program which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. suctrALTcf 34123 is suctrALTcfVD 34124 without virtual deductions and was derived automatically from suctrALTcfVD 34124. The version of completeusersproof.cmd used is capable of only generating conjunction-form unification theorems, not unification deductions. (Contributed by Alan Sare, 13-Jun-2015.) (Proof modification is discouraged.) (New usage is discouraged.)
1::  |-  (. Tr  A  ->.  Tr  A ).
2::  |-  (..........  ( z  e.  y  /\  y  e.  suc  A )  ->.  ( z  e.  y  /\  y  e.  suc  A ) ).
3:2:  |-  (..........  ( z  e.  y  /\  y  e.  suc  A )  ->.  z  e.  y ).
4::  |-  (.................................... .......  y  e.  A  ->.  y  e.  A ).
5:1,3,4:  |-  (. (. Tr  A ,. ( z  e.  y  /\  y  e.  suc  A )  ,  y  e.  A ).  ->.  z  e.  A ).
6::  |-  A  C_  suc  A
7:5,6:  |-  (. (. Tr  A ,. ( z  e.  y  /\  y  e.  suc  A )  ,  y  e.  A ).  ->.  z  e.  suc  A ).
8:7:  |-  (. (. Tr  A ,. ( z  e.  y  /\  y  e.  suc  A )  ).  ->.  ( y  e.  A  ->  z  e.  suc  A ) ).
9::  |-  (.................................... ......  y  =  A  ->.  y  =  A ).
10:3,9:  |-  (.........  (. ( z  e.  y  /\  y  e.  suc  A ) ,  y  =  A ).  ->.  z  e.  A ).
11:10,6:  |-  (.........  (. ( z  e.  y  /\  y  e.  suc  A ) ,  y  =  A ).  ->.  z  e.  suc  A ).
12:11:  |-  (...........  ( z  e.  y  /\  y  e.  suc  A )  ->.  ( y  =  A  ->  z  e.  suc  A ) ).
13:2:  |-  (...........  ( z  e.  y  /\  y  e.  suc  A )  ->.  y  e.  suc  A ).
14:13:  |-  (...........  ( z  e.  y  /\  y  e.  suc  A )  ->.  ( y  e.  A  \/  y  =  A ) ).
15:8,12,14:  |-  (. (. Tr  A ,. ( z  e.  y  /\  y  e.  suc  A )  ).  ->.  z  e.  suc  A ).
16:15:  |-  (. Tr  A  ->.  ( ( z  e.  y  /\  y  e.  suc  A )  ->  z  e.  suc  A ) ).
17:16:  |-  (. Tr  A  ->.  A. z A. y ( ( z  e.  y  /\  y  e.  suc  A )  ->  z  e.  suc  A ) ).
18:17:  |-  (. Tr  A  ->.  Tr  suc  A ).
qed:18:  |-  ( Tr  A  ->  Tr  suc  A )
Assertion
Ref Expression
suctrALTcfVD  |-  ( Tr  A  ->  Tr  suc  A
)

Proof of Theorem suctrALTcfVD
Dummy variables  z 
y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sssucid 4944 . . . . . . . 8  |-  A  C_  suc  A
2 idn1 33745 . . . . . . . . 9  |-  (. Tr  A 
->.  Tr  A ).
3 idn1 33745 . . . . . . . . . 10  |-  (. (
z  e.  y  /\  y  e.  suc  A )  ->.  ( z  e.  y  /\  y  e.  suc  A ) ).
4 simpl 455 . . . . . . . . . 10  |-  ( ( z  e.  y  /\  y  e.  suc  A )  ->  z  e.  y )
53, 4el1 33808 . . . . . . . . 9  |-  (. (
z  e.  y  /\  y  e.  suc  A )  ->.  z  e.  y ).
6 idn1 33745 . . . . . . . . 9  |-  (. y  e.  A  ->.  y  e.  A ).
7 trel 4539 . . . . . . . . . 10  |-  ( Tr  A  ->  ( (
z  e.  y  /\  y  e.  A )  ->  z  e.  A ) )
873impib 1192 . . . . . . . . 9  |-  ( ( Tr  A  /\  z  e.  y  /\  y  e.  A )  ->  z  e.  A )
92, 5, 6, 8el123 33955 . . . . . . . 8  |-  (. (. Tr  A ,. ( z  e.  y  /\  y  e.  suc  A ) ,. y  e.  A ).  ->.  z  e.  A ).
10 ssel2 3484 . . . . . . . 8  |-  ( ( A  C_  suc  A  /\  z  e.  A )  ->  z  e.  suc  A
)
111, 9, 10el0321old 33906 . . . . . . 7  |-  (. (. Tr  A ,. ( z  e.  y  /\  y  e.  suc  A ) ,. y  e.  A ).  ->.  z  e.  suc  A ).
1211int3 33792 . . . . . 6  |-  (. (. Tr  A ,. ( z  e.  y  /\  y  e.  suc  A ) ).  ->.  ( y  e.  A  ->  z  e.  suc  A
) ).
13 idn1 33745 . . . . . . . . 9  |-  (. y  =  A  ->.  y  =  A ).
14 eleq2 2527 . . . . . . . . . 10  |-  ( y  =  A  ->  (
z  e.  y  <->  z  e.  A ) )
1514biimpac 484 . . . . . . . . 9  |-  ( ( z  e.  y  /\  y  =  A )  ->  z  e.  A )
165, 13, 15el12 33917 . . . . . . . 8  |-  (. (. ( z  e.  y  /\  y  e.  suc  A ) ,. y  =  A ).  ->.  z  e.  A ).
171, 16, 10el021old 33881 . . . . . . 7  |-  (. (. ( z  e.  y  /\  y  e.  suc  A ) ,. y  =  A ).  ->.  z  e.  suc  A ).
1817int2 33786 . . . . . 6  |-  (. (
z  e.  y  /\  y  e.  suc  A )  ->.  ( y  =  A  ->  z  e.  suc  A ) ).
19 simpr 459 . . . . . . . 8  |-  ( ( z  e.  y  /\  y  e.  suc  A )  ->  y  e.  suc  A )
203, 19el1 33808 . . . . . . 7  |-  (. (
z  e.  y  /\  y  e.  suc  A )  ->.  y  e.  suc  A ).
21 elsuci 4933 . . . . . . 7  |-  ( y  e.  suc  A  -> 
( y  e.  A  \/  y  =  A
) )
2220, 21el1 33808 . . . . . 6  |-  (. (
z  e.  y  /\  y  e.  suc  A )  ->.  ( y  e.  A  \/  y  =  A
) ).
23 jao 510 . . . . . . 7  |-  ( ( y  e.  A  -> 
z  e.  suc  A
)  ->  ( (
y  =  A  -> 
z  e.  suc  A
)  ->  ( (
y  e.  A  \/  y  =  A )  ->  z  e.  suc  A
) ) )
24233imp 1188 . . . . . 6  |-  ( ( ( y  e.  A  ->  z  e.  suc  A
)  /\  ( y  =  A  ->  z  e. 
suc  A )  /\  ( y  e.  A  \/  y  =  A
) )  ->  z  e.  suc  A )
2512, 18, 22, 24el2122old 33908 . . . . 5  |-  (. (. Tr  A ,. ( z  e.  y  /\  y  e.  suc  A ) ).  ->.  z  e.  suc  A ).
2625int2 33786 . . . 4  |-  (. Tr  A 
->.  ( ( z  e.  y  /\  y  e. 
suc  A )  -> 
z  e.  suc  A
) ).
2726gen12 33798 . . 3  |-  (. Tr  A 
->.  A. z A. y
( ( z  e.  y  /\  y  e. 
suc  A )  -> 
z  e.  suc  A
) ).
28 dftr2 4534 . . . 4  |-  ( Tr 
suc  A  <->  A. z A. y
( ( z  e.  y  /\  y  e. 
suc  A )  -> 
z  e.  suc  A
) )
2928biimpri 206 . . 3  |-  ( A. z A. y ( ( z  e.  y  /\  y  e.  suc  A )  ->  z  e.  suc  A )  ->  Tr  suc  A
)
3027, 29el1 33808 . 2  |-  (. Tr  A 
->.  Tr  suc  A ).
3130in1 33742 1  |-  ( Tr  A  ->  Tr  suc  A
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    \/ wo 366    /\ wa 367   A.wal 1396    = wceq 1398    e. wcel 1823    C_ wss 3461   Tr wtr 4532   suc csuc 4869
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1623  ax-4 1636  ax-5 1709  ax-6 1752  ax-7 1795  ax-10 1842  ax-11 1847  ax-12 1859  ax-13 2004  ax-ext 2432
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3an 973  df-tru 1401  df-ex 1618  df-nf 1622  df-sb 1745  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-v 3108  df-un 3466  df-in 3468  df-ss 3475  df-sn 4017  df-uni 4236  df-tr 4533  df-suc 4873  df-vd1 33741  df-vhc2 33752  df-vhc3 33760
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator