Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  suctrALT3 Structured version   Unicode version

Theorem suctrALT3 37294
Description: The successor of a transtive class is transitive. suctrALT3 37294 is the completed proof in conventional notation of the Virtual Deduction proof http://us.metamath.org/other/completeusersproof/suctralt3vd.html. It was completed manually. The potential for automated derivation from the VD proof exists. See wvd1 36910 for a description of Virtual Deduction. Some sub-theorems of the proof were completed using a unification deduction ( e.g. , the sub-theorem whose assertion is step 19 used jaoded 36903). Unification deductions employ Mario Carneiro's metavariable concept. Some sub-theorems were completed using a unification theorem ( e.g. , the sub-theorem whose assertion is step 24 used dftr2 4520) . (Contributed by Alan Sare, 3-Dec-2015.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
suctrALT3  |-  ( Tr  A  ->  Tr  suc  A
)

Proof of Theorem suctrALT3
Dummy variables  z 
y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sssucid 5519 . . . . . . . . 9  |-  A  C_  suc  A
2 id 22 . . . . . . . . . 10  |-  ( Tr  A  ->  Tr  A
)
3 id 22 . . . . . . . . . . 11  |-  ( ( z  e.  y  /\  y  e.  suc  A )  ->  ( z  e.  y  /\  y  e. 
suc  A ) )
43simpld 460 . . . . . . . . . 10  |-  ( ( z  e.  y  /\  y  e.  suc  A )  ->  z  e.  y )
5 id 22 . . . . . . . . . 10  |-  ( y  e.  A  ->  y  e.  A )
62, 4, 5trelded 36902 . . . . . . . . 9  |-  ( ( Tr  A  /\  (
z  e.  y  /\  y  e.  suc  A )  /\  y  e.  A
)  ->  z  e.  A )
71, 6sseldi 3462 . . . . . . . 8  |-  ( ( Tr  A  /\  (
z  e.  y  /\  y  e.  suc  A )  /\  y  e.  A
)  ->  z  e.  suc  A )
873expia 1207 . . . . . . 7  |-  ( ( Tr  A  /\  (
z  e.  y  /\  y  e.  suc  A ) )  ->  ( y  e.  A  ->  z  e. 
suc  A ) )
9 id 22 . . . . . . . . . 10  |-  ( y  =  A  ->  y  =  A )
10 eleq2 2496 . . . . . . . . . . 11  |-  ( y  =  A  ->  (
z  e.  y  <->  z  e.  A ) )
1110biimpac 488 . . . . . . . . . 10  |-  ( ( z  e.  y  /\  y  =  A )  ->  z  e.  A )
124, 9, 11syl2an 479 . . . . . . . . 9  |-  ( ( ( z  e.  y  /\  y  e.  suc  A )  /\  y  =  A )  ->  z  e.  A )
131, 12sseldi 3462 . . . . . . . 8  |-  ( ( ( z  e.  y  /\  y  e.  suc  A )  /\  y  =  A )  ->  z  e.  suc  A )
1413ex 435 . . . . . . 7  |-  ( ( z  e.  y  /\  y  e.  suc  A )  ->  ( y  =  A  ->  z  e.  suc  A ) )
153simprd 464 . . . . . . . 8  |-  ( ( z  e.  y  /\  y  e.  suc  A )  ->  y  e.  suc  A )
16 elsuci 5508 . . . . . . . 8  |-  ( y  e.  suc  A  -> 
( y  e.  A  \/  y  =  A
) )
1715, 16syl 17 . . . . . . 7  |-  ( ( z  e.  y  /\  y  e.  suc  A )  ->  ( y  e.  A  \/  y  =  A ) )
188, 14, 17jaoded 36903 . . . . . 6  |-  ( ( ( Tr  A  /\  ( z  e.  y  /\  y  e.  suc  A ) )  /\  (
z  e.  y  /\  y  e.  suc  A )  /\  ( z  e.  y  /\  y  e. 
suc  A ) )  ->  z  e.  suc  A )
1918un2122 37150 . . . . 5  |-  ( ( Tr  A  /\  (
z  e.  y  /\  y  e.  suc  A ) )  ->  z  e.  suc  A )
2019ex 435 . . . 4  |-  ( Tr  A  ->  ( (
z  e.  y  /\  y  e.  suc  A )  ->  z  e.  suc  A ) )
2120alrimivv 1768 . . 3  |-  ( Tr  A  ->  A. z A. y ( ( z  e.  y  /\  y  e.  suc  A )  -> 
z  e.  suc  A
) )
22 dftr2 4520 . . . 4  |-  ( Tr 
suc  A  <->  A. z A. y
( ( z  e.  y  /\  y  e. 
suc  A )  -> 
z  e.  suc  A
) )
2322biimpri 209 . . 3  |-  ( A. z A. y ( ( z  e.  y  /\  y  e.  suc  A )  ->  z  e.  suc  A )  ->  Tr  suc  A
)
2421, 23syl 17 . 2  |-  ( Tr  A  ->  Tr  suc  A
)
2524idiALT 36802 1  |-  ( Tr  A  ->  Tr  suc  A
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    \/ wo 369    /\ wa 370    /\ w3a 982   A.wal 1435    = wceq 1437    e. wcel 1872   Tr wtr 4518   suc csuc 5444
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1663  ax-4 1676  ax-5 1752  ax-6 1798  ax-7 1843  ax-10 1891  ax-11 1896  ax-12 1909  ax-13 2057  ax-ext 2401
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3an 984  df-tru 1440  df-ex 1658  df-nf 1662  df-sb 1791  df-clab 2408  df-cleq 2414  df-clel 2417  df-nfc 2568  df-v 3082  df-un 3441  df-in 3443  df-ss 3450  df-sn 3999  df-uni 4220  df-tr 4519  df-suc 5448
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator