Mathbox for Alan Sare < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sucidALTVD Structured version   Unicode version

Theorem sucidALTVD 37125
Description: A set belongs to its successor. Alternate proof of sucid 5517. The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. sucidALT 37126 is sucidALTVD 37125 without virtual deductions and was automatically derived from sucidALTVD 37125. This proof illustrates that completeusersproof.cmd will generate a Metamath proof from any User's Proof which is "conventional" in the sense that no step is a virtual deduction, provided that all necessary unification theorems and transformation deductions are in set.mm. completeusersproof.cmd automatically converts such a conventional proof into a Virtual Deduction proof for which each step happens to be a 0-virtual hypothesis virtual deduction. The user does not need to search for reference theorem labels or deduction labels nor does he(she) need to use theorems and deductions which unify with reference theorems and deductions in set.mm. All that is necessary is that each theorem or deduction of the User's Proof unifies with some reference theorem or deduction in set.mm or is a semantic variation of some theorem or deduction which unifies with some reference theorem or deduction in set.mm. The definition of "semantic variation" has not been precisely defined. If it is obvious that a theorem or deduction has the same meaning as another theorem or deduction, then it is a semantic variation of the latter theorem or deduction. For example, step 4 of the User's Proof is a semantic variation of the definition (axiom) , which unifies with df-suc 5444, a reference definition (axiom) in set.mm. Also, a theorem or deduction is said to be a semantic variation of another theorem or deduction if it is obvious upon cursory inspection that it has the same meaning as a weaker form of the latter theorem or deduction. For example, the deduction infers is a semantic variation of the theorem , which unifies with the set.mm reference definition (axiom) dford2 8127.
 h1:: 2:1: 3:2: 4:: qed:3,4:
(Contributed by Alan Sare, 18-Feb-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypothesis
Ref Expression
sucidALTVD.1
Assertion
Ref Expression
sucidALTVD

Proof of Theorem sucidALTVD
StepHypRef Expression
1 sucidALTVD.1 . . . 4
21snid 4024 . . 3
3 elun1 3633 . . 3
42, 3e0a 37017 . 2
5 df-suc 5444 . . 3
65equncomi 3612 . 2
74, 6eleqtrri 2509 1
 Colors of variables: wff setvar class Syntax hints:   wcel 1868  cvv 3081   cun 3434  csn 3996   csuc 5440 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1748  ax-6 1794  ax-7 1839  ax-10 1887  ax-11 1892  ax-12 1905  ax-13 2053  ax-ext 2400 This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-tru 1440  df-ex 1660  df-nf 1664  df-sb 1787  df-clab 2408  df-cleq 2414  df-clel 2417  df-nfc 2572  df-v 3083  df-un 3441  df-in 3443  df-ss 3450  df-sn 3997  df-suc 5444 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator