MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sucdom2 Structured version   Unicode version

Theorem sucdom2 7714
Description: Strict dominance of a set over another set implies dominance over its successor. (Contributed by Mario Carneiro, 12-Jan-2013.) (Proof shortened by Mario Carneiro, 27-Apr-2015.)
Assertion
Ref Expression
sucdom2  |-  ( A 
~<  B  ->  suc  A  ~<_  B )

Proof of Theorem sucdom2
Dummy variables  w  f are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sdomdom 7543 . . 3  |-  ( A 
~<  B  ->  A  ~<_  B )
2 brdomi 7527 . . 3  |-  ( A  ~<_  B  ->  E. f 
f : A -1-1-> B
)
31, 2syl 16 . 2  |-  ( A 
~<  B  ->  E. f 
f : A -1-1-> B
)
4 relsdom 7523 . . . . . . 7  |-  Rel  ~<
54brrelexi 5040 . . . . . 6  |-  ( A 
~<  B  ->  A  e. 
_V )
65adantr 465 . . . . 5  |-  ( ( A  ~<  B  /\  f : A -1-1-> B )  ->  A  e.  _V )
7 vex 3116 . . . . . . 7  |-  f  e. 
_V
87rnex 6718 . . . . . 6  |-  ran  f  e.  _V
98a1i 11 . . . . 5  |-  ( ( A  ~<  B  /\  f : A -1-1-> B )  ->  ran  f  e.  _V )
10 f1f1orn 5827 . . . . . . 7  |-  ( f : A -1-1-> B  -> 
f : A -1-1-onto-> ran  f
)
1110adantl 466 . . . . . 6  |-  ( ( A  ~<  B  /\  f : A -1-1-> B )  ->  f : A -1-1-onto-> ran  f )
12 f1of1 5815 . . . . . 6  |-  ( f : A -1-1-onto-> ran  f  ->  f : A -1-1-> ran  f )
1311, 12syl 16 . . . . 5  |-  ( ( A  ~<  B  /\  f : A -1-1-> B )  ->  f : A -1-1-> ran  f )
14 f1dom2g 7533 . . . . 5  |-  ( ( A  e.  _V  /\  ran  f  e.  _V  /\  f : A -1-1-> ran  f )  ->  A  ~<_  ran  f )
156, 9, 13, 14syl3anc 1228 . . . 4  |-  ( ( A  ~<  B  /\  f : A -1-1-> B )  ->  A  ~<_  ran  f
)
16 sdomnen 7544 . . . . . . . 8  |-  ( A 
~<  B  ->  -.  A  ~~  B )
1716adantr 465 . . . . . . 7  |-  ( ( A  ~<  B  /\  f : A -1-1-> B )  ->  -.  A  ~~  B )
18 ssdif0 3885 . . . . . . . 8  |-  ( B 
C_  ran  f  <->  ( B  \  ran  f )  =  (/) )
19 simplr 754 . . . . . . . . . . 11  |-  ( ( ( A  ~<  B  /\  f : A -1-1-> B )  /\  B  C_  ran  f )  ->  f : A -1-1-> B )
20 f1f 5781 . . . . . . . . . . . . . . 15  |-  ( f : A -1-1-> B  -> 
f : A --> B )
21 df-f 5592 . . . . . . . . . . . . . . 15  |-  ( f : A --> B  <->  ( f  Fn  A  /\  ran  f  C_  B ) )
2220, 21sylib 196 . . . . . . . . . . . . . 14  |-  ( f : A -1-1-> B  -> 
( f  Fn  A  /\  ran  f  C_  B
) )
2322simprd 463 . . . . . . . . . . . . 13  |-  ( f : A -1-1-> B  ->  ran  f  C_  B )
2419, 23syl 16 . . . . . . . . . . . 12  |-  ( ( ( A  ~<  B  /\  f : A -1-1-> B )  /\  B  C_  ran  f )  ->  ran  f  C_  B )
25 simpr 461 . . . . . . . . . . . 12  |-  ( ( ( A  ~<  B  /\  f : A -1-1-> B )  /\  B  C_  ran  f )  ->  B  C_ 
ran  f )
2624, 25eqssd 3521 . . . . . . . . . . 11  |-  ( ( ( A  ~<  B  /\  f : A -1-1-> B )  /\  B  C_  ran  f )  ->  ran  f  =  B )
27 dff1o5 5825 . . . . . . . . . . 11  |-  ( f : A -1-1-onto-> B  <->  ( f : A -1-1-> B  /\  ran  f  =  B ) )
2819, 26, 27sylanbrc 664 . . . . . . . . . 10  |-  ( ( ( A  ~<  B  /\  f : A -1-1-> B )  /\  B  C_  ran  f )  ->  f : A -1-1-onto-> B )
29 f1oen3g 7531 . . . . . . . . . 10  |-  ( ( f  e.  _V  /\  f : A -1-1-onto-> B )  ->  A  ~~  B )
307, 28, 29sylancr 663 . . . . . . . . 9  |-  ( ( ( A  ~<  B  /\  f : A -1-1-> B )  /\  B  C_  ran  f )  ->  A  ~~  B )
3130ex 434 . . . . . . . 8  |-  ( ( A  ~<  B  /\  f : A -1-1-> B )  ->  ( B  C_  ran  f  ->  A  ~~  B ) )
3218, 31syl5bir 218 . . . . . . 7  |-  ( ( A  ~<  B  /\  f : A -1-1-> B )  ->  ( ( B 
\  ran  f )  =  (/)  ->  A  ~~  B ) )
3317, 32mtod 177 . . . . . 6  |-  ( ( A  ~<  B  /\  f : A -1-1-> B )  ->  -.  ( B  \  ran  f )  =  (/) )
34 neq0 3795 . . . . . 6  |-  ( -.  ( B  \  ran  f )  =  (/)  <->  E. w  w  e.  ( B  \  ran  f ) )
3533, 34sylib 196 . . . . 5  |-  ( ( A  ~<  B  /\  f : A -1-1-> B )  ->  E. w  w  e.  ( B  \  ran  f ) )
36 snssi 4171 . . . . . . 7  |-  ( w  e.  ( B  \  ran  f )  ->  { w }  C_  ( B  \  ran  f ) )
37 vex 3116 . . . . . . . . 9  |-  w  e. 
_V
38 en2sn 7595 . . . . . . . . 9  |-  ( ( A  e.  _V  /\  w  e.  _V )  ->  { A }  ~~  { w } )
396, 37, 38sylancl 662 . . . . . . . 8  |-  ( ( A  ~<  B  /\  f : A -1-1-> B )  ->  { A }  ~~  { w } )
404brrelex2i 5041 . . . . . . . . . 10  |-  ( A 
~<  B  ->  B  e. 
_V )
4140adantr 465 . . . . . . . . 9  |-  ( ( A  ~<  B  /\  f : A -1-1-> B )  ->  B  e.  _V )
42 difexg 4595 . . . . . . . . 9  |-  ( B  e.  _V  ->  ( B  \  ran  f )  e.  _V )
43 ssdomg 7561 . . . . . . . . 9  |-  ( ( B  \  ran  f
)  e.  _V  ->  ( { w }  C_  ( B  \  ran  f
)  ->  { w }  ~<_  ( B  \  ran  f ) ) )
4441, 42, 433syl 20 . . . . . . . 8  |-  ( ( A  ~<  B  /\  f : A -1-1-> B )  ->  ( { w }  C_  ( B  \  ran  f )  ->  { w }  ~<_  ( B  \  ran  f ) ) )
45 endomtr 7573 . . . . . . . 8  |-  ( ( { A }  ~~  { w }  /\  {
w }  ~<_  ( B 
\  ran  f )
)  ->  { A }  ~<_  ( B  \  ran  f ) )
4639, 44, 45syl6an 545 . . . . . . 7  |-  ( ( A  ~<  B  /\  f : A -1-1-> B )  ->  ( { w }  C_  ( B  \  ran  f )  ->  { A }  ~<_  ( B  \  ran  f ) ) )
4736, 46syl5 32 . . . . . 6  |-  ( ( A  ~<  B  /\  f : A -1-1-> B )  ->  ( w  e.  ( B  \  ran  f )  ->  { A }  ~<_  ( B  \  ran  f ) ) )
4847exlimdv 1700 . . . . 5  |-  ( ( A  ~<  B  /\  f : A -1-1-> B )  ->  ( E. w  w  e.  ( B  \  ran  f )  ->  { A }  ~<_  ( B 
\  ran  f )
) )
4935, 48mpd 15 . . . 4  |-  ( ( A  ~<  B  /\  f : A -1-1-> B )  ->  { A }  ~<_  ( B  \  ran  f
) )
50 disjdif 3899 . . . . 5  |-  ( ran  f  i^i  ( B 
\  ran  f )
)  =  (/)
5150a1i 11 . . . 4  |-  ( ( A  ~<  B  /\  f : A -1-1-> B )  ->  ( ran  f  i^i  ( B  \  ran  f ) )  =  (/) )
52 undom 7605 . . . 4  |-  ( ( ( A  ~<_  ran  f  /\  { A }  ~<_  ( B 
\  ran  f )
)  /\  ( ran  f  i^i  ( B  \  ran  f ) )  =  (/) )  ->  ( A  u.  { A }
)  ~<_  ( ran  f  u.  ( B  \  ran  f ) ) )
5315, 49, 51, 52syl21anc 1227 . . 3  |-  ( ( A  ~<  B  /\  f : A -1-1-> B )  ->  ( A  u.  { A } )  ~<_  ( ran  f  u.  ( B  \  ran  f ) ) )
54 df-suc 4884 . . . 4  |-  suc  A  =  ( A  u.  { A } )
5554a1i 11 . . 3  |-  ( ( A  ~<  B  /\  f : A -1-1-> B )  ->  suc  A  =  ( A  u.  { A } ) )
56 undif2 3903 . . . 4  |-  ( ran  f  u.  ( B 
\  ran  f )
)  =  ( ran  f  u.  B )
5723adantl 466 . . . . 5  |-  ( ( A  ~<  B  /\  f : A -1-1-> B )  ->  ran  f  C_  B )
58 ssequn1 3674 . . . . 5  |-  ( ran  f  C_  B  <->  ( ran  f  u.  B )  =  B )
5957, 58sylib 196 . . . 4  |-  ( ( A  ~<  B  /\  f : A -1-1-> B )  ->  ( ran  f  u.  B )  =  B )
6056, 59syl5req 2521 . . 3  |-  ( ( A  ~<  B  /\  f : A -1-1-> B )  ->  B  =  ( ran  f  u.  ( B  \  ran  f ) ) )
6153, 55, 603brtr4d 4477 . 2  |-  ( ( A  ~<  B  /\  f : A -1-1-> B )  ->  suc  A  ~<_  B )
623, 61exlimddv 1702 1  |-  ( A 
~<  B  ->  suc  A  ~<_  B )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 369    = wceq 1379   E.wex 1596    e. wcel 1767   _Vcvv 3113    \ cdif 3473    u. cun 3474    i^i cin 3475    C_ wss 3476   (/)c0 3785   {csn 4027   class class class wbr 4447   suc csuc 4880   ran crn 5000    Fn wfn 5583   -->wf 5584   -1-1->wf1 5585   -1-1-onto->wf1o 5587    ~~ cen 7513    ~<_ cdom 7514    ~< csdm 7515
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6576
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2819  df-rex 2820  df-rab 2823  df-v 3115  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-op 4034  df-uni 4246  df-br 4448  df-opab 4506  df-id 4795  df-suc 4884  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-fun 5590  df-fn 5591  df-f 5592  df-f1 5593  df-fo 5594  df-f1o 5595  df-1o 7130  df-er 7311  df-en 7517  df-dom 7518  df-sdom 7519
This theorem is referenced by:  sucdom  7715  card2inf  7981
  Copyright terms: Public domain W3C validator