MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sucdom2 Structured version   Unicode version

Theorem sucdom2 7707
Description: Strict dominance of a set over another set implies dominance over its successor. (Contributed by Mario Carneiro, 12-Jan-2013.) (Proof shortened by Mario Carneiro, 27-Apr-2015.)
Assertion
Ref Expression
sucdom2  |-  ( A 
~<  B  ->  suc  A  ~<_  B )

Proof of Theorem sucdom2
Dummy variables  w  f are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sdomdom 7536 . . 3  |-  ( A 
~<  B  ->  A  ~<_  B )
2 brdomi 7520 . . 3  |-  ( A  ~<_  B  ->  E. f 
f : A -1-1-> B
)
31, 2syl 16 . 2  |-  ( A 
~<  B  ->  E. f 
f : A -1-1-> B
)
4 relsdom 7516 . . . . . . 7  |-  Rel  ~<
54brrelexi 5029 . . . . . 6  |-  ( A 
~<  B  ->  A  e. 
_V )
65adantr 463 . . . . 5  |-  ( ( A  ~<  B  /\  f : A -1-1-> B )  ->  A  e.  _V )
7 vex 3109 . . . . . . 7  |-  f  e. 
_V
87rnex 6707 . . . . . 6  |-  ran  f  e.  _V
98a1i 11 . . . . 5  |-  ( ( A  ~<  B  /\  f : A -1-1-> B )  ->  ran  f  e.  _V )
10 f1f1orn 5809 . . . . . . 7  |-  ( f : A -1-1-> B  -> 
f : A -1-1-onto-> ran  f
)
1110adantl 464 . . . . . 6  |-  ( ( A  ~<  B  /\  f : A -1-1-> B )  ->  f : A -1-1-onto-> ran  f )
12 f1of1 5797 . . . . . 6  |-  ( f : A -1-1-onto-> ran  f  ->  f : A -1-1-> ran  f )
1311, 12syl 16 . . . . 5  |-  ( ( A  ~<  B  /\  f : A -1-1-> B )  ->  f : A -1-1-> ran  f )
14 f1dom2g 7526 . . . . 5  |-  ( ( A  e.  _V  /\  ran  f  e.  _V  /\  f : A -1-1-> ran  f )  ->  A  ~<_  ran  f )
156, 9, 13, 14syl3anc 1226 . . . 4  |-  ( ( A  ~<  B  /\  f : A -1-1-> B )  ->  A  ~<_  ran  f
)
16 sdomnen 7537 . . . . . . . 8  |-  ( A 
~<  B  ->  -.  A  ~~  B )
1716adantr 463 . . . . . . 7  |-  ( ( A  ~<  B  /\  f : A -1-1-> B )  ->  -.  A  ~~  B )
18 ssdif0 3873 . . . . . . . 8  |-  ( B 
C_  ran  f  <->  ( B  \  ran  f )  =  (/) )
19 simplr 753 . . . . . . . . . . 11  |-  ( ( ( A  ~<  B  /\  f : A -1-1-> B )  /\  B  C_  ran  f )  ->  f : A -1-1-> B )
20 f1f 5763 . . . . . . . . . . . . . . 15  |-  ( f : A -1-1-> B  -> 
f : A --> B )
21 df-f 5574 . . . . . . . . . . . . . . 15  |-  ( f : A --> B  <->  ( f  Fn  A  /\  ran  f  C_  B ) )
2220, 21sylib 196 . . . . . . . . . . . . . 14  |-  ( f : A -1-1-> B  -> 
( f  Fn  A  /\  ran  f  C_  B
) )
2322simprd 461 . . . . . . . . . . . . 13  |-  ( f : A -1-1-> B  ->  ran  f  C_  B )
2419, 23syl 16 . . . . . . . . . . . 12  |-  ( ( ( A  ~<  B  /\  f : A -1-1-> B )  /\  B  C_  ran  f )  ->  ran  f  C_  B )
25 simpr 459 . . . . . . . . . . . 12  |-  ( ( ( A  ~<  B  /\  f : A -1-1-> B )  /\  B  C_  ran  f )  ->  B  C_ 
ran  f )
2624, 25eqssd 3506 . . . . . . . . . . 11  |-  ( ( ( A  ~<  B  /\  f : A -1-1-> B )  /\  B  C_  ran  f )  ->  ran  f  =  B )
27 dff1o5 5807 . . . . . . . . . . 11  |-  ( f : A -1-1-onto-> B  <->  ( f : A -1-1-> B  /\  ran  f  =  B ) )
2819, 26, 27sylanbrc 662 . . . . . . . . . 10  |-  ( ( ( A  ~<  B  /\  f : A -1-1-> B )  /\  B  C_  ran  f )  ->  f : A -1-1-onto-> B )
29 f1oen3g 7524 . . . . . . . . . 10  |-  ( ( f  e.  _V  /\  f : A -1-1-onto-> B )  ->  A  ~~  B )
307, 28, 29sylancr 661 . . . . . . . . 9  |-  ( ( ( A  ~<  B  /\  f : A -1-1-> B )  /\  B  C_  ran  f )  ->  A  ~~  B )
3130ex 432 . . . . . . . 8  |-  ( ( A  ~<  B  /\  f : A -1-1-> B )  ->  ( B  C_  ran  f  ->  A  ~~  B ) )
3218, 31syl5bir 218 . . . . . . 7  |-  ( ( A  ~<  B  /\  f : A -1-1-> B )  ->  ( ( B 
\  ran  f )  =  (/)  ->  A  ~~  B ) )
3317, 32mtod 177 . . . . . 6  |-  ( ( A  ~<  B  /\  f : A -1-1-> B )  ->  -.  ( B  \  ran  f )  =  (/) )
34 neq0 3794 . . . . . 6  |-  ( -.  ( B  \  ran  f )  =  (/)  <->  E. w  w  e.  ( B  \  ran  f ) )
3533, 34sylib 196 . . . . 5  |-  ( ( A  ~<  B  /\  f : A -1-1-> B )  ->  E. w  w  e.  ( B  \  ran  f ) )
36 snssi 4160 . . . . . . 7  |-  ( w  e.  ( B  \  ran  f )  ->  { w }  C_  ( B  \  ran  f ) )
37 vex 3109 . . . . . . . . 9  |-  w  e. 
_V
38 en2sn 7588 . . . . . . . . 9  |-  ( ( A  e.  _V  /\  w  e.  _V )  ->  { A }  ~~  { w } )
396, 37, 38sylancl 660 . . . . . . . 8  |-  ( ( A  ~<  B  /\  f : A -1-1-> B )  ->  { A }  ~~  { w } )
404brrelex2i 5030 . . . . . . . . . 10  |-  ( A 
~<  B  ->  B  e. 
_V )
4140adantr 463 . . . . . . . . 9  |-  ( ( A  ~<  B  /\  f : A -1-1-> B )  ->  B  e.  _V )
42 difexg 4585 . . . . . . . . 9  |-  ( B  e.  _V  ->  ( B  \  ran  f )  e.  _V )
43 ssdomg 7554 . . . . . . . . 9  |-  ( ( B  \  ran  f
)  e.  _V  ->  ( { w }  C_  ( B  \  ran  f
)  ->  { w }  ~<_  ( B  \  ran  f ) ) )
4441, 42, 433syl 20 . . . . . . . 8  |-  ( ( A  ~<  B  /\  f : A -1-1-> B )  ->  ( { w }  C_  ( B  \  ran  f )  ->  { w }  ~<_  ( B  \  ran  f ) ) )
45 endomtr 7566 . . . . . . . 8  |-  ( ( { A }  ~~  { w }  /\  {
w }  ~<_  ( B 
\  ran  f )
)  ->  { A }  ~<_  ( B  \  ran  f ) )
4639, 44, 45syl6an 543 . . . . . . 7  |-  ( ( A  ~<  B  /\  f : A -1-1-> B )  ->  ( { w }  C_  ( B  \  ran  f )  ->  { A }  ~<_  ( B  \  ran  f ) ) )
4736, 46syl5 32 . . . . . 6  |-  ( ( A  ~<  B  /\  f : A -1-1-> B )  ->  ( w  e.  ( B  \  ran  f )  ->  { A }  ~<_  ( B  \  ran  f ) ) )
4847exlimdv 1729 . . . . 5  |-  ( ( A  ~<  B  /\  f : A -1-1-> B )  ->  ( E. w  w  e.  ( B  \  ran  f )  ->  { A }  ~<_  ( B 
\  ran  f )
) )
4935, 48mpd 15 . . . 4  |-  ( ( A  ~<  B  /\  f : A -1-1-> B )  ->  { A }  ~<_  ( B  \  ran  f
) )
50 disjdif 3888 . . . . 5  |-  ( ran  f  i^i  ( B 
\  ran  f )
)  =  (/)
5150a1i 11 . . . 4  |-  ( ( A  ~<  B  /\  f : A -1-1-> B )  ->  ( ran  f  i^i  ( B  \  ran  f ) )  =  (/) )
52 undom 7598 . . . 4  |-  ( ( ( A  ~<_  ran  f  /\  { A }  ~<_  ( B 
\  ran  f )
)  /\  ( ran  f  i^i  ( B  \  ran  f ) )  =  (/) )  ->  ( A  u.  { A }
)  ~<_  ( ran  f  u.  ( B  \  ran  f ) ) )
5315, 49, 51, 52syl21anc 1225 . . 3  |-  ( ( A  ~<  B  /\  f : A -1-1-> B )  ->  ( A  u.  { A } )  ~<_  ( ran  f  u.  ( B  \  ran  f ) ) )
54 df-suc 4873 . . . 4  |-  suc  A  =  ( A  u.  { A } )
5554a1i 11 . . 3  |-  ( ( A  ~<  B  /\  f : A -1-1-> B )  ->  suc  A  =  ( A  u.  { A } ) )
56 undif2 3892 . . . 4  |-  ( ran  f  u.  ( B 
\  ran  f )
)  =  ( ran  f  u.  B )
5723adantl 464 . . . . 5  |-  ( ( A  ~<  B  /\  f : A -1-1-> B )  ->  ran  f  C_  B )
58 ssequn1 3660 . . . . 5  |-  ( ran  f  C_  B  <->  ( ran  f  u.  B )  =  B )
5957, 58sylib 196 . . . 4  |-  ( ( A  ~<  B  /\  f : A -1-1-> B )  ->  ( ran  f  u.  B )  =  B )
6056, 59syl5req 2508 . . 3  |-  ( ( A  ~<  B  /\  f : A -1-1-> B )  ->  B  =  ( ran  f  u.  ( B  \  ran  f ) ) )
6153, 55, 603brtr4d 4469 . 2  |-  ( ( A  ~<  B  /\  f : A -1-1-> B )  ->  suc  A  ~<_  B )
623, 61exlimddv 1731 1  |-  ( A 
~<  B  ->  suc  A  ~<_  B )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 367    = wceq 1398   E.wex 1617    e. wcel 1823   _Vcvv 3106    \ cdif 3458    u. cun 3459    i^i cin 3460    C_ wss 3461   (/)c0 3783   {csn 4016   class class class wbr 4439   suc csuc 4869   ran crn 4989    Fn wfn 5565   -->wf 5566   -1-1->wf1 5567   -1-1-onto->wf1o 5569    ~~ cen 7506    ~<_ cdom 7507    ~< csdm 7508
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1623  ax-4 1636  ax-5 1709  ax-6 1752  ax-7 1795  ax-8 1825  ax-9 1827  ax-10 1842  ax-11 1847  ax-12 1859  ax-13 2004  ax-ext 2432  ax-sep 4560  ax-nul 4568  ax-pow 4615  ax-pr 4676  ax-un 6565
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3an 973  df-tru 1401  df-ex 1618  df-nf 1622  df-sb 1745  df-eu 2288  df-mo 2289  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2651  df-ral 2809  df-rex 2810  df-rab 2813  df-v 3108  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-nul 3784  df-if 3930  df-pw 4001  df-sn 4017  df-pr 4019  df-op 4023  df-uni 4236  df-br 4440  df-opab 4498  df-id 4784  df-suc 4873  df-xp 4994  df-rel 4995  df-cnv 4996  df-co 4997  df-dm 4998  df-rn 4999  df-res 5000  df-ima 5001  df-fun 5572  df-fn 5573  df-f 5574  df-f1 5575  df-fo 5576  df-f1o 5577  df-1o 7122  df-er 7303  df-en 7510  df-dom 7511  df-sdom 7512
This theorem is referenced by:  sucdom  7708  card2inf  7973
  Copyright terms: Public domain W3C validator