MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sucdom2 Unicode version

Theorem sucdom2 7262
Description: Strict dominance of a set over another set implies dominance over its successor. (Contributed by Mario Carneiro, 12-Jan-2013.) (Proof shortened by Mario Carneiro, 27-Apr-2015.)
Assertion
Ref Expression
sucdom2  |-  ( A 
~<  B  ->  suc  A  ~<_  B )

Proof of Theorem sucdom2
Dummy variables  w  f are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sdomdom 7094 . . 3  |-  ( A 
~<  B  ->  A  ~<_  B )
2 brdomi 7078 . . 3  |-  ( A  ~<_  B  ->  E. f 
f : A -1-1-> B
)
31, 2syl 16 . 2  |-  ( A 
~<  B  ->  E. f 
f : A -1-1-> B
)
4 relsdom 7075 . . . . . . 7  |-  Rel  ~<
54brrelexi 4877 . . . . . 6  |-  ( A 
~<  B  ->  A  e. 
_V )
65adantr 452 . . . . 5  |-  ( ( A  ~<  B  /\  f : A -1-1-> B )  ->  A  e.  _V )
7 vex 2919 . . . . . . 7  |-  f  e. 
_V
87rnex 5092 . . . . . 6  |-  ran  f  e.  _V
98a1i 11 . . . . 5  |-  ( ( A  ~<  B  /\  f : A -1-1-> B )  ->  ran  f  e.  _V )
10 f1f1orn 5644 . . . . . . 7  |-  ( f : A -1-1-> B  -> 
f : A -1-1-onto-> ran  f
)
1110adantl 453 . . . . . 6  |-  ( ( A  ~<  B  /\  f : A -1-1-> B )  ->  f : A -1-1-onto-> ran  f )
12 f1of1 5632 . . . . . 6  |-  ( f : A -1-1-onto-> ran  f  ->  f : A -1-1-> ran  f )
1311, 12syl 16 . . . . 5  |-  ( ( A  ~<  B  /\  f : A -1-1-> B )  ->  f : A -1-1-> ran  f )
14 f1dom2g 7084 . . . . 5  |-  ( ( A  e.  _V  /\  ran  f  e.  _V  /\  f : A -1-1-> ran  f )  ->  A  ~<_  ran  f )
156, 9, 13, 14syl3anc 1184 . . . 4  |-  ( ( A  ~<  B  /\  f : A -1-1-> B )  ->  A  ~<_  ran  f
)
16 sdomnen 7095 . . . . . . . 8  |-  ( A 
~<  B  ->  -.  A  ~~  B )
1716adantr 452 . . . . . . 7  |-  ( ( A  ~<  B  /\  f : A -1-1-> B )  ->  -.  A  ~~  B )
18 ssdif0 3646 . . . . . . . 8  |-  ( B 
C_  ran  f  <->  ( B  \  ran  f )  =  (/) )
19 simplr 732 . . . . . . . . . . 11  |-  ( ( ( A  ~<  B  /\  f : A -1-1-> B )  /\  B  C_  ran  f )  ->  f : A -1-1-> B )
20 f1f 5598 . . . . . . . . . . . . . . 15  |-  ( f : A -1-1-> B  -> 
f : A --> B )
21 df-f 5417 . . . . . . . . . . . . . . 15  |-  ( f : A --> B  <->  ( f  Fn  A  /\  ran  f  C_  B ) )
2220, 21sylib 189 . . . . . . . . . . . . . 14  |-  ( f : A -1-1-> B  -> 
( f  Fn  A  /\  ran  f  C_  B
) )
2322simprd 450 . . . . . . . . . . . . 13  |-  ( f : A -1-1-> B  ->  ran  f  C_  B )
2419, 23syl 16 . . . . . . . . . . . 12  |-  ( ( ( A  ~<  B  /\  f : A -1-1-> B )  /\  B  C_  ran  f )  ->  ran  f  C_  B )
25 simpr 448 . . . . . . . . . . . 12  |-  ( ( ( A  ~<  B  /\  f : A -1-1-> B )  /\  B  C_  ran  f )  ->  B  C_ 
ran  f )
2624, 25eqssd 3325 . . . . . . . . . . 11  |-  ( ( ( A  ~<  B  /\  f : A -1-1-> B )  /\  B  C_  ran  f )  ->  ran  f  =  B )
27 dff1o5 5642 . . . . . . . . . . 11  |-  ( f : A -1-1-onto-> B  <->  ( f : A -1-1-> B  /\  ran  f  =  B ) )
2819, 26, 27sylanbrc 646 . . . . . . . . . 10  |-  ( ( ( A  ~<  B  /\  f : A -1-1-> B )  /\  B  C_  ran  f )  ->  f : A -1-1-onto-> B )
29 f1oen3g 7082 . . . . . . . . . 10  |-  ( ( f  e.  _V  /\  f : A -1-1-onto-> B )  ->  A  ~~  B )
307, 28, 29sylancr 645 . . . . . . . . 9  |-  ( ( ( A  ~<  B  /\  f : A -1-1-> B )  /\  B  C_  ran  f )  ->  A  ~~  B )
3130ex 424 . . . . . . . 8  |-  ( ( A  ~<  B  /\  f : A -1-1-> B )  ->  ( B  C_  ran  f  ->  A  ~~  B ) )
3218, 31syl5bir 210 . . . . . . 7  |-  ( ( A  ~<  B  /\  f : A -1-1-> B )  ->  ( ( B 
\  ran  f )  =  (/)  ->  A  ~~  B ) )
3317, 32mtod 170 . . . . . 6  |-  ( ( A  ~<  B  /\  f : A -1-1-> B )  ->  -.  ( B  \  ran  f )  =  (/) )
34 neq0 3598 . . . . . 6  |-  ( -.  ( B  \  ran  f )  =  (/)  <->  E. w  w  e.  ( B  \  ran  f ) )
3533, 34sylib 189 . . . . 5  |-  ( ( A  ~<  B  /\  f : A -1-1-> B )  ->  E. w  w  e.  ( B  \  ran  f ) )
36 snssi 3902 . . . . . . 7  |-  ( w  e.  ( B  \  ran  f )  ->  { w }  C_  ( B  \  ran  f ) )
37 vex 2919 . . . . . . . . 9  |-  w  e. 
_V
38 en2sn 7145 . . . . . . . . 9  |-  ( ( A  e.  _V  /\  w  e.  _V )  ->  { A }  ~~  { w } )
396, 37, 38sylancl 644 . . . . . . . 8  |-  ( ( A  ~<  B  /\  f : A -1-1-> B )  ->  { A }  ~~  { w } )
404brrelex2i 4878 . . . . . . . . . 10  |-  ( A 
~<  B  ->  B  e. 
_V )
4140adantr 452 . . . . . . . . 9  |-  ( ( A  ~<  B  /\  f : A -1-1-> B )  ->  B  e.  _V )
42 difexg 4311 . . . . . . . . 9  |-  ( B  e.  _V  ->  ( B  \  ran  f )  e.  _V )
43 ssdomg 7112 . . . . . . . . 9  |-  ( ( B  \  ran  f
)  e.  _V  ->  ( { w }  C_  ( B  \  ran  f
)  ->  { w }  ~<_  ( B  \  ran  f ) ) )
4441, 42, 433syl 19 . . . . . . . 8  |-  ( ( A  ~<  B  /\  f : A -1-1-> B )  ->  ( { w }  C_  ( B  \  ran  f )  ->  { w }  ~<_  ( B  \  ran  f ) ) )
45 endomtr 7124 . . . . . . . 8  |-  ( ( { A }  ~~  { w }  /\  {
w }  ~<_  ( B 
\  ran  f )
)  ->  { A }  ~<_  ( B  \  ran  f ) )
4639, 44, 45ee12an 1369 . . . . . . 7  |-  ( ( A  ~<  B  /\  f : A -1-1-> B )  ->  ( { w }  C_  ( B  \  ran  f )  ->  { A }  ~<_  ( B  \  ran  f ) ) )
4736, 46syl5 30 . . . . . 6  |-  ( ( A  ~<  B  /\  f : A -1-1-> B )  ->  ( w  e.  ( B  \  ran  f )  ->  { A }  ~<_  ( B  \  ran  f ) ) )
4847exlimdv 1643 . . . . 5  |-  ( ( A  ~<  B  /\  f : A -1-1-> B )  ->  ( E. w  w  e.  ( B  \  ran  f )  ->  { A }  ~<_  ( B 
\  ran  f )
) )
4935, 48mpd 15 . . . 4  |-  ( ( A  ~<  B  /\  f : A -1-1-> B )  ->  { A }  ~<_  ( B  \  ran  f
) )
50 disjdif 3660 . . . . 5  |-  ( ran  f  i^i  ( B 
\  ran  f )
)  =  (/)
5150a1i 11 . . . 4  |-  ( ( A  ~<  B  /\  f : A -1-1-> B )  ->  ( ran  f  i^i  ( B  \  ran  f ) )  =  (/) )
52 undom 7155 . . . 4  |-  ( ( ( A  ~<_  ran  f  /\  { A }  ~<_  ( B 
\  ran  f )
)  /\  ( ran  f  i^i  ( B  \  ran  f ) )  =  (/) )  ->  ( A  u.  { A }
)  ~<_  ( ran  f  u.  ( B  \  ran  f ) ) )
5315, 49, 51, 52syl21anc 1183 . . 3  |-  ( ( A  ~<  B  /\  f : A -1-1-> B )  ->  ( A  u.  { A } )  ~<_  ( ran  f  u.  ( B  \  ran  f ) ) )
54 df-suc 4547 . . . 4  |-  suc  A  =  ( A  u.  { A } )
5554a1i 11 . . 3  |-  ( ( A  ~<  B  /\  f : A -1-1-> B )  ->  suc  A  =  ( A  u.  { A } ) )
56 undif2 3664 . . . 4  |-  ( ran  f  u.  ( B 
\  ran  f )
)  =  ( ran  f  u.  B )
5723adantl 453 . . . . 5  |-  ( ( A  ~<  B  /\  f : A -1-1-> B )  ->  ran  f  C_  B )
58 ssequn1 3477 . . . . 5  |-  ( ran  f  C_  B  <->  ( ran  f  u.  B )  =  B )
5957, 58sylib 189 . . . 4  |-  ( ( A  ~<  B  /\  f : A -1-1-> B )  ->  ( ran  f  u.  B )  =  B )
6056, 59syl5req 2449 . . 3  |-  ( ( A  ~<  B  /\  f : A -1-1-> B )  ->  B  =  ( ran  f  u.  ( B  \  ran  f ) ) )
6153, 55, 603brtr4d 4202 . 2  |-  ( ( A  ~<  B  /\  f : A -1-1-> B )  ->  suc  A  ~<_  B )
623, 61exlimddv 1645 1  |-  ( A 
~<  B  ->  suc  A  ~<_  B )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 359   E.wex 1547    = wceq 1649    e. wcel 1721   _Vcvv 2916    \ cdif 3277    u. cun 3278    i^i cin 3279    C_ wss 3280   (/)c0 3588   {csn 3774   class class class wbr 4172   suc csuc 4543   ran crn 4838    Fn wfn 5408   -->wf 5409   -1-1->wf1 5410   -1-1-onto->wf1o 5412    ~~ cen 7065    ~<_ cdom 7066    ~< csdm 7067
This theorem is referenced by:  sucdom  7263  card2inf  7479
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-ral 2671  df-rex 2672  df-rab 2675  df-v 2918  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-op 3783  df-uni 3976  df-br 4173  df-opab 4227  df-id 4458  df-suc 4547  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-1o 6683  df-er 6864  df-en 7069  df-dom 7070  df-sdom 7071
  Copyright terms: Public domain W3C validator