MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  suc11reg Structured version   Visualization version   Unicode version

Theorem suc11reg 8155
Description: The successor operation behaves like a one-to-one function (assuming the Axiom of Regularity). Exercise 35 of [Enderton] p. 208 and its converse. (Contributed by NM, 25-Oct-2003.)
Assertion
Ref Expression
suc11reg  |-  ( suc 
A  =  suc  B  <->  A  =  B )

Proof of Theorem suc11reg
StepHypRef Expression
1 en2lp 8149 . . . . 5  |-  -.  ( A  e.  B  /\  B  e.  A )
2 ianor 495 . . . . 5  |-  ( -.  ( A  e.  B  /\  B  e.  A
)  <->  ( -.  A  e.  B  \/  -.  B  e.  A )
)
31, 2mpbi 213 . . . 4  |-  ( -.  A  e.  B  \/  -.  B  e.  A
)
4 sucidg 5524 . . . . . . . . . . 11  |-  ( A  e.  _V  ->  A  e.  suc  A )
5 eleq2 2529 . . . . . . . . . . 11  |-  ( suc 
A  =  suc  B  ->  ( A  e.  suc  A  <-> 
A  e.  suc  B
) )
64, 5syl5ibcom 228 . . . . . . . . . 10  |-  ( A  e.  _V  ->  ( suc  A  =  suc  B  ->  A  e.  suc  B
) )
7 elsucg 5513 . . . . . . . . . 10  |-  ( A  e.  _V  ->  ( A  e.  suc  B  <->  ( A  e.  B  \/  A  =  B ) ) )
86, 7sylibd 222 . . . . . . . . 9  |-  ( A  e.  _V  ->  ( suc  A  =  suc  B  ->  ( A  e.  B  \/  A  =  B
) ) )
98imp 435 . . . . . . . 8  |-  ( ( A  e.  _V  /\  suc  A  =  suc  B
)  ->  ( A  e.  B  \/  A  =  B ) )
109ord 383 . . . . . . 7  |-  ( ( A  e.  _V  /\  suc  A  =  suc  B
)  ->  ( -.  A  e.  B  ->  A  =  B ) )
1110ex 440 . . . . . 6  |-  ( A  e.  _V  ->  ( suc  A  =  suc  B  ->  ( -.  A  e.  B  ->  A  =  B ) ) )
1211com23 81 . . . . 5  |-  ( A  e.  _V  ->  ( -.  A  e.  B  ->  ( suc  A  =  suc  B  ->  A  =  B ) ) )
13 sucidg 5524 . . . . . . . . . . . 12  |-  ( B  e.  _V  ->  B  e.  suc  B )
14 eleq2 2529 . . . . . . . . . . . 12  |-  ( suc 
A  =  suc  B  ->  ( B  e.  suc  A  <-> 
B  e.  suc  B
) )
1513, 14syl5ibrcom 230 . . . . . . . . . . 11  |-  ( B  e.  _V  ->  ( suc  A  =  suc  B  ->  B  e.  suc  A
) )
16 elsucg 5513 . . . . . . . . . . 11  |-  ( B  e.  _V  ->  ( B  e.  suc  A  <->  ( B  e.  A  \/  B  =  A ) ) )
1715, 16sylibd 222 . . . . . . . . . 10  |-  ( B  e.  _V  ->  ( suc  A  =  suc  B  ->  ( B  e.  A  \/  B  =  A
) ) )
1817imp 435 . . . . . . . . 9  |-  ( ( B  e.  _V  /\  suc  A  =  suc  B
)  ->  ( B  e.  A  \/  B  =  A ) )
1918ord 383 . . . . . . . 8  |-  ( ( B  e.  _V  /\  suc  A  =  suc  B
)  ->  ( -.  B  e.  A  ->  B  =  A ) )
20 eqcom 2469 . . . . . . . 8  |-  ( B  =  A  <->  A  =  B )
2119, 20syl6ib 234 . . . . . . 7  |-  ( ( B  e.  _V  /\  suc  A  =  suc  B
)  ->  ( -.  B  e.  A  ->  A  =  B ) )
2221ex 440 . . . . . 6  |-  ( B  e.  _V  ->  ( suc  A  =  suc  B  ->  ( -.  B  e.  A  ->  A  =  B ) ) )
2322com23 81 . . . . 5  |-  ( B  e.  _V  ->  ( -.  B  e.  A  ->  ( suc  A  =  suc  B  ->  A  =  B ) ) )
2412, 23jaao 516 . . . 4  |-  ( ( A  e.  _V  /\  B  e.  _V )  ->  ( ( -.  A  e.  B  \/  -.  B  e.  A )  ->  ( suc  A  =  suc  B  ->  A  =  B ) ) )
253, 24mpi 20 . . 3  |-  ( ( A  e.  _V  /\  B  e.  _V )  ->  ( suc  A  =  suc  B  ->  A  =  B ) )
26 sucexb 6668 . . . . 5  |-  ( A  e.  _V  <->  suc  A  e. 
_V )
27 sucexb 6668 . . . . . 6  |-  ( B  e.  _V  <->  suc  B  e. 
_V )
2827notbii 302 . . . . 5  |-  ( -.  B  e.  _V  <->  -.  suc  B  e.  _V )
29 nelneq 2564 . . . . 5  |-  ( ( suc  A  e.  _V  /\ 
-.  suc  B  e.  _V )  ->  -.  suc  A  =  suc  B )
3026, 28, 29syl2anb 486 . . . 4  |-  ( ( A  e.  _V  /\  -.  B  e.  _V )  ->  -.  suc  A  =  suc  B )
3130pm2.21d 110 . . 3  |-  ( ( A  e.  _V  /\  -.  B  e.  _V )  ->  ( suc  A  =  suc  B  ->  A  =  B ) )
32 eqcom 2469 . . . 4  |-  ( suc 
A  =  suc  B  <->  suc 
B  =  suc  A
)
3326notbii 302 . . . . . . 7  |-  ( -.  A  e.  _V  <->  -.  suc  A  e.  _V )
34 nelneq 2564 . . . . . . 7  |-  ( ( suc  B  e.  _V  /\ 
-.  suc  A  e.  _V )  ->  -.  suc  B  =  suc  A )
3527, 33, 34syl2anb 486 . . . . . 6  |-  ( ( B  e.  _V  /\  -.  A  e.  _V )  ->  -.  suc  B  =  suc  A )
3635ancoms 459 . . . . 5  |-  ( ( -.  A  e.  _V  /\  B  e.  _V )  ->  -.  suc  B  =  suc  A )
3736pm2.21d 110 . . . 4  |-  ( ( -.  A  e.  _V  /\  B  e.  _V )  ->  ( suc  B  =  suc  A  ->  A  =  B ) )
3832, 37syl5bi 225 . . 3  |-  ( ( -.  A  e.  _V  /\  B  e.  _V )  ->  ( suc  A  =  suc  B  ->  A  =  B ) )
39 sucprc 5521 . . . . 5  |-  ( -.  A  e.  _V  ->  suc 
A  =  A )
40 sucprc 5521 . . . . 5  |-  ( -.  B  e.  _V  ->  suc 
B  =  B )
4139, 40eqeqan12d 2478 . . . 4  |-  ( ( -.  A  e.  _V  /\ 
-.  B  e.  _V )  ->  ( suc  A  =  suc  B  <->  A  =  B ) )
4241biimpd 212 . . 3  |-  ( ( -.  A  e.  _V  /\ 
-.  B  e.  _V )  ->  ( suc  A  =  suc  B  ->  A  =  B ) )
4325, 31, 38, 424cases 966 . 2  |-  ( suc 
A  =  suc  B  ->  A  =  B )
44 suceq 5511 . 2  |-  ( A  =  B  ->  suc  A  =  suc  B )
4543, 44impbii 192 1  |-  ( suc 
A  =  suc  B  <->  A  =  B )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 189    \/ wo 374    /\ wa 375    = wceq 1455    e. wcel 1898   _Vcvv 3057   suc csuc 5448
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1680  ax-4 1693  ax-5 1769  ax-6 1816  ax-7 1862  ax-8 1900  ax-9 1907  ax-10 1926  ax-11 1931  ax-12 1944  ax-13 2102  ax-ext 2442  ax-sep 4541  ax-nul 4550  ax-pr 4656  ax-un 6615  ax-reg 8138
This theorem depends on definitions:  df-bi 190  df-or 376  df-an 377  df-3an 993  df-tru 1458  df-ex 1675  df-nf 1679  df-sb 1809  df-eu 2314  df-mo 2315  df-clab 2449  df-cleq 2455  df-clel 2458  df-nfc 2592  df-ne 2635  df-ral 2754  df-rex 2755  df-rab 2758  df-v 3059  df-sbc 3280  df-dif 3419  df-un 3421  df-in 3423  df-ss 3430  df-nul 3744  df-if 3894  df-sn 3981  df-pr 3983  df-op 3987  df-uni 4213  df-br 4419  df-opab 4478  df-eprel 4767  df-fr 4815  df-suc 5452
This theorem is referenced by:  rankxpsuc  8384  bnj551  29602  1oequni2o  31817
  Copyright terms: Public domain W3C validator