MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  suc11 Structured version   Unicode version

Theorem suc11 4981
Description: The successor operation behaves like a one-to-one function. Compare Exercise 16 of [Enderton] p. 194. (Contributed by NM, 3-Sep-2003.)
Assertion
Ref Expression
suc11  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( suc  A  =  suc  B  <->  A  =  B ) )

Proof of Theorem suc11
StepHypRef Expression
1 eloni 4888 . . . . 5  |-  ( A  e.  On  ->  Ord  A )
2 ordn2lp 4898 . . . . . 6  |-  ( Ord 
A  ->  -.  ( A  e.  B  /\  B  e.  A )
)
3 ianor 488 . . . . . 6  |-  ( -.  ( A  e.  B  /\  B  e.  A
)  <->  ( -.  A  e.  B  \/  -.  B  e.  A )
)
42, 3sylib 196 . . . . 5  |-  ( Ord 
A  ->  ( -.  A  e.  B  \/  -.  B  e.  A
) )
51, 4syl 16 . . . 4  |-  ( A  e.  On  ->  ( -.  A  e.  B  \/  -.  B  e.  A
) )
65adantr 465 . . 3  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( -.  A  e.  B  \/  -.  B  e.  A ) )
7 eqimss 3556 . . . . . 6  |-  ( suc 
A  =  suc  B  ->  suc  A  C_  suc  B )
8 sucssel 4970 . . . . . 6  |-  ( A  e.  On  ->  ( suc  A  C_  suc  B  ->  A  e.  suc  B ) )
97, 8syl5 32 . . . . 5  |-  ( A  e.  On  ->  ( suc  A  =  suc  B  ->  A  e.  suc  B
) )
10 elsuci 4944 . . . . . . 7  |-  ( A  e.  suc  B  -> 
( A  e.  B  \/  A  =  B
) )
1110ord 377 . . . . . 6  |-  ( A  e.  suc  B  -> 
( -.  A  e.  B  ->  A  =  B ) )
1211com12 31 . . . . 5  |-  ( -.  A  e.  B  -> 
( A  e.  suc  B  ->  A  =  B ) )
139, 12syl9 71 . . . 4  |-  ( A  e.  On  ->  ( -.  A  e.  B  ->  ( suc  A  =  suc  B  ->  A  =  B ) ) )
14 eqimss2 3557 . . . . . 6  |-  ( suc 
A  =  suc  B  ->  suc  B  C_  suc  A )
15 sucssel 4970 . . . . . 6  |-  ( B  e.  On  ->  ( suc  B  C_  suc  A  ->  B  e.  suc  A ) )
1614, 15syl5 32 . . . . 5  |-  ( B  e.  On  ->  ( suc  A  =  suc  B  ->  B  e.  suc  A
) )
17 elsuci 4944 . . . . . . . 8  |-  ( B  e.  suc  A  -> 
( B  e.  A  \/  B  =  A
) )
1817ord 377 . . . . . . 7  |-  ( B  e.  suc  A  -> 
( -.  B  e.  A  ->  B  =  A ) )
1918com12 31 . . . . . 6  |-  ( -.  B  e.  A  -> 
( B  e.  suc  A  ->  B  =  A ) )
20 eqcom 2476 . . . . . 6  |-  ( B  =  A  <->  A  =  B )
2119, 20syl6ib 226 . . . . 5  |-  ( -.  B  e.  A  -> 
( B  e.  suc  A  ->  A  =  B ) )
2216, 21syl9 71 . . . 4  |-  ( B  e.  On  ->  ( -.  B  e.  A  ->  ( suc  A  =  suc  B  ->  A  =  B ) ) )
2313, 22jaao 509 . . 3  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( ( -.  A  e.  B  \/  -.  B  e.  A )  ->  ( suc  A  =  suc  B  ->  A  =  B ) ) )
246, 23mpd 15 . 2  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( suc  A  =  suc  B  ->  A  =  B ) )
25 suceq 4943 . 2  |-  ( A  =  B  ->  suc  A  =  suc  B )
2624, 25impbid1 203 1  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( suc  A  =  suc  B  <->  A  =  B ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    \/ wo 368    /\ wa 369    = wceq 1379    e. wcel 1767    C_ wss 3476   Ord word 4877   Oncon0 4878   suc csuc 4880
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4568  ax-nul 4576  ax-pr 4686
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2819  df-rex 2820  df-rab 2823  df-v 3115  df-sbc 3332  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-nul 3786  df-if 3940  df-sn 4028  df-pr 4030  df-op 4034  df-uni 4246  df-br 4448  df-opab 4506  df-tr 4541  df-eprel 4791  df-po 4800  df-so 4801  df-fr 4838  df-we 4840  df-ord 4881  df-on 4882  df-suc 4884
This theorem is referenced by:  peano4  6706  limenpsi  7692  fin1a2lem2  8781  sltval2  29021  sltsolem1  29033  onsuct0  29511  bnj168  32883
  Copyright terms: Public domain W3C validator