Users' Mathboxes Mathbox for Jeff Hankins < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  subtr Structured version   Unicode version

Theorem subtr 29737
Description: Transitivity of implicit substitution. (Contributed by Jeff Hankins, 13-Sep-2009.) (Proof shortened by Mario Carneiro, 11-Dec-2016.)
Hypotheses
Ref Expression
subtr.1  |-  F/_ x A
subtr.2  |-  F/_ x B
subtr.3  |-  F/_ x Y
subtr.4  |-  F/_ x Z
subtr.5  |-  ( x  =  A  ->  X  =  Y )
subtr.6  |-  ( x  =  B  ->  X  =  Z )
Assertion
Ref Expression
subtr  |-  ( ( A  e.  C  /\  B  e.  D )  ->  ( A  =  B  ->  Y  =  Z ) )

Proof of Theorem subtr
StepHypRef Expression
1 subtr.1 . . 3  |-  F/_ x A
2 subtr.2 . . . . 5  |-  F/_ x B
31, 2nfeq 2640 . . . 4  |-  F/ x  A  =  B
4 subtr.3 . . . . 5  |-  F/_ x Y
5 subtr.4 . . . . 5  |-  F/_ x Z
64, 5nfeq 2640 . . . 4  |-  F/ x  Y  =  Z
73, 6nfim 1867 . . 3  |-  F/ x
( A  =  B  ->  Y  =  Z )
8 eqeq1 2471 . . . 4  |-  ( x  =  A  ->  (
x  =  B  <->  A  =  B ) )
9 subtr.5 . . . . 5  |-  ( x  =  A  ->  X  =  Y )
109eqeq1d 2469 . . . 4  |-  ( x  =  A  ->  ( X  =  Z  <->  Y  =  Z ) )
118, 10imbi12d 320 . . 3  |-  ( x  =  A  ->  (
( x  =  B  ->  X  =  Z )  <->  ( A  =  B  ->  Y  =  Z ) ) )
12 subtr.6 . . 3  |-  ( x  =  B  ->  X  =  Z )
131, 7, 11, 12vtoclgf 3169 . 2  |-  ( A  e.  C  ->  ( A  =  B  ->  Y  =  Z ) )
1413adantr 465 1  |-  ( ( A  e.  C  /\  B  e.  D )  ->  ( A  =  B  ->  Y  =  Z ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1379    e. wcel 1767   F/_wnfc 2615
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445
This theorem depends on definitions:  df-bi 185  df-an 371  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-v 3115
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator