MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subsubrg Structured version   Unicode version

Theorem subsubrg 17303
Description: A subring of a subring is a subring. (Contributed by Mario Carneiro, 4-Dec-2014.)
Hypothesis
Ref Expression
subsubrg.s  |-  S  =  ( Rs  A )
Assertion
Ref Expression
subsubrg  |-  ( A  e.  (SubRing `  R
)  ->  ( B  e.  (SubRing `  S )  <->  ( B  e.  (SubRing `  R
)  /\  B  C_  A
) ) )

Proof of Theorem subsubrg
StepHypRef Expression
1 subrgrcl 17282 . . . . . 6  |-  ( A  e.  (SubRing `  R
)  ->  R  e.  Ring )
21adantr 465 . . . . 5  |-  ( ( A  e.  (SubRing `  R
)  /\  B  e.  (SubRing `  S ) )  ->  R  e.  Ring )
3 eqid 2467 . . . . . . . . . 10  |-  ( Base `  S )  =  (
Base `  S )
43subrgss 17278 . . . . . . . . 9  |-  ( B  e.  (SubRing `  S
)  ->  B  C_  ( Base `  S ) )
54adantl 466 . . . . . . . 8  |-  ( ( A  e.  (SubRing `  R
)  /\  B  e.  (SubRing `  S ) )  ->  B  C_  ( Base `  S ) )
6 subsubrg.s . . . . . . . . . 10  |-  S  =  ( Rs  A )
76subrgbas 17286 . . . . . . . . 9  |-  ( A  e.  (SubRing `  R
)  ->  A  =  ( Base `  S )
)
87adantr 465 . . . . . . . 8  |-  ( ( A  e.  (SubRing `  R
)  /\  B  e.  (SubRing `  S ) )  ->  A  =  (
Base `  S )
)
95, 8sseqtr4d 3546 . . . . . . 7  |-  ( ( A  e.  (SubRing `  R
)  /\  B  e.  (SubRing `  S ) )  ->  B  C_  A
)
106oveq1i 6304 . . . . . . . 8  |-  ( Ss  B )  =  ( ( Rs  A )s  B )
11 ressabs 14565 . . . . . . . 8  |-  ( ( A  e.  (SubRing `  R
)  /\  B  C_  A
)  ->  ( ( Rs  A )s  B )  =  ( Rs  B ) )
1210, 11syl5eq 2520 . . . . . . 7  |-  ( ( A  e.  (SubRing `  R
)  /\  B  C_  A
)  ->  ( Ss  B
)  =  ( Rs  B ) )
139, 12syldan 470 . . . . . 6  |-  ( ( A  e.  (SubRing `  R
)  /\  B  e.  (SubRing `  S ) )  ->  ( Ss  B )  =  ( Rs  B ) )
14 eqid 2467 . . . . . . . 8  |-  ( Ss  B )  =  ( Ss  B )
1514subrgring 17280 . . . . . . 7  |-  ( B  e.  (SubRing `  S
)  ->  ( Ss  B
)  e.  Ring )
1615adantl 466 . . . . . 6  |-  ( ( A  e.  (SubRing `  R
)  /\  B  e.  (SubRing `  S ) )  ->  ( Ss  B )  e.  Ring )
1713, 16eqeltrrd 2556 . . . . 5  |-  ( ( A  e.  (SubRing `  R
)  /\  B  e.  (SubRing `  S ) )  ->  ( Rs  B )  e.  Ring )
182, 17jca 532 . . . 4  |-  ( ( A  e.  (SubRing `  R
)  /\  B  e.  (SubRing `  S ) )  ->  ( R  e. 
Ring  /\  ( Rs  B )  e.  Ring ) )
19 eqid 2467 . . . . . . . 8  |-  ( Base `  R )  =  (
Base `  R )
2019subrgss 17278 . . . . . . 7  |-  ( A  e.  (SubRing `  R
)  ->  A  C_  ( Base `  R ) )
2120adantr 465 . . . . . 6  |-  ( ( A  e.  (SubRing `  R
)  /\  B  e.  (SubRing `  S ) )  ->  A  C_  ( Base `  R ) )
229, 21sstrd 3519 . . . . 5  |-  ( ( A  e.  (SubRing `  R
)  /\  B  e.  (SubRing `  S ) )  ->  B  C_  ( Base `  R ) )
23 eqid 2467 . . . . . . . 8  |-  ( 1r
`  R )  =  ( 1r `  R
)
246, 23subrg1 17287 . . . . . . 7  |-  ( A  e.  (SubRing `  R
)  ->  ( 1r `  R )  =  ( 1r `  S ) )
2524adantr 465 . . . . . 6  |-  ( ( A  e.  (SubRing `  R
)  /\  B  e.  (SubRing `  S ) )  ->  ( 1r `  R )  =  ( 1r `  S ) )
26 eqid 2467 . . . . . . . 8  |-  ( 1r
`  S )  =  ( 1r `  S
)
2726subrg1cl 17285 . . . . . . 7  |-  ( B  e.  (SubRing `  S
)  ->  ( 1r `  S )  e.  B
)
2827adantl 466 . . . . . 6  |-  ( ( A  e.  (SubRing `  R
)  /\  B  e.  (SubRing `  S ) )  ->  ( 1r `  S )  e.  B
)
2925, 28eqeltrd 2555 . . . . 5  |-  ( ( A  e.  (SubRing `  R
)  /\  B  e.  (SubRing `  S ) )  ->  ( 1r `  R )  e.  B
)
3022, 29jca 532 . . . 4  |-  ( ( A  e.  (SubRing `  R
)  /\  B  e.  (SubRing `  S ) )  ->  ( B  C_  ( Base `  R )  /\  ( 1r `  R
)  e.  B ) )
3119, 23issubrg 17277 . . . 4  |-  ( B  e.  (SubRing `  R
)  <->  ( ( R  e.  Ring  /\  ( Rs  B )  e.  Ring )  /\  ( B  C_  ( Base `  R )  /\  ( 1r `  R
)  e.  B ) ) )
3218, 30, 31sylanbrc 664 . . 3  |-  ( ( A  e.  (SubRing `  R
)  /\  B  e.  (SubRing `  S ) )  ->  B  e.  (SubRing `  R ) )
3332, 9jca 532 . 2  |-  ( ( A  e.  (SubRing `  R
)  /\  B  e.  (SubRing `  S ) )  ->  ( B  e.  (SubRing `  R )  /\  B  C_  A ) )
346subrgring 17280 . . . . 5  |-  ( A  e.  (SubRing `  R
)  ->  S  e.  Ring )
3534adantr 465 . . . 4  |-  ( ( A  e.  (SubRing `  R
)  /\  ( B  e.  (SubRing `  R )  /\  B  C_  A ) )  ->  S  e.  Ring )
3612adantrl 715 . . . . 5  |-  ( ( A  e.  (SubRing `  R
)  /\  ( B  e.  (SubRing `  R )  /\  B  C_  A ) )  ->  ( Ss  B
)  =  ( Rs  B ) )
37 eqid 2467 . . . . . . 7  |-  ( Rs  B )  =  ( Rs  B )
3837subrgring 17280 . . . . . 6  |-  ( B  e.  (SubRing `  R
)  ->  ( Rs  B
)  e.  Ring )
3938ad2antrl 727 . . . . 5  |-  ( ( A  e.  (SubRing `  R
)  /\  ( B  e.  (SubRing `  R )  /\  B  C_  A ) )  ->  ( Rs  B
)  e.  Ring )
4036, 39eqeltrd 2555 . . . 4  |-  ( ( A  e.  (SubRing `  R
)  /\  ( B  e.  (SubRing `  R )  /\  B  C_  A ) )  ->  ( Ss  B
)  e.  Ring )
4135, 40jca 532 . . 3  |-  ( ( A  e.  (SubRing `  R
)  /\  ( B  e.  (SubRing `  R )  /\  B  C_  A ) )  ->  ( S  e.  Ring  /\  ( Ss  B
)  e.  Ring )
)
42 simprr 756 . . . . 5  |-  ( ( A  e.  (SubRing `  R
)  /\  ( B  e.  (SubRing `  R )  /\  B  C_  A ) )  ->  B  C_  A
)
437adantr 465 . . . . 5  |-  ( ( A  e.  (SubRing `  R
)  /\  ( B  e.  (SubRing `  R )  /\  B  C_  A ) )  ->  A  =  ( Base `  S )
)
4442, 43sseqtrd 3545 . . . 4  |-  ( ( A  e.  (SubRing `  R
)  /\  ( B  e.  (SubRing `  R )  /\  B  C_  A ) )  ->  B  C_  ( Base `  S ) )
4524adantr 465 . . . . 5  |-  ( ( A  e.  (SubRing `  R
)  /\  ( B  e.  (SubRing `  R )  /\  B  C_  A ) )  ->  ( 1r `  R )  =  ( 1r `  S ) )
4623subrg1cl 17285 . . . . . 6  |-  ( B  e.  (SubRing `  R
)  ->  ( 1r `  R )  e.  B
)
4746ad2antrl 727 . . . . 5  |-  ( ( A  e.  (SubRing `  R
)  /\  ( B  e.  (SubRing `  R )  /\  B  C_  A ) )  ->  ( 1r `  R )  e.  B
)
4845, 47eqeltrrd 2556 . . . 4  |-  ( ( A  e.  (SubRing `  R
)  /\  ( B  e.  (SubRing `  R )  /\  B  C_  A ) )  ->  ( 1r `  S )  e.  B
)
4944, 48jca 532 . . 3  |-  ( ( A  e.  (SubRing `  R
)  /\  ( B  e.  (SubRing `  R )  /\  B  C_  A ) )  ->  ( B  C_  ( Base `  S
)  /\  ( 1r `  S )  e.  B
) )
503, 26issubrg 17277 . . 3  |-  ( B  e.  (SubRing `  S
)  <->  ( ( S  e.  Ring  /\  ( Ss  B )  e.  Ring )  /\  ( B  C_  ( Base `  S )  /\  ( 1r `  S
)  e.  B ) ) )
5141, 49, 50sylanbrc 664 . 2  |-  ( ( A  e.  (SubRing `  R
)  /\  ( B  e.  (SubRing `  R )  /\  B  C_  A ) )  ->  B  e.  (SubRing `  S ) )
5233, 51impbida 830 1  |-  ( A  e.  (SubRing `  R
)  ->  ( B  e.  (SubRing `  S )  <->  ( B  e.  (SubRing `  R
)  /\  B  C_  A
) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1379    e. wcel 1767    C_ wss 3481   ` cfv 5593  (class class class)co 6294   Basecbs 14502   ↾s cress 14503   1rcur 17002   Ringcrg 17047  SubRingcsubrg 17273
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4573  ax-nul 4581  ax-pow 4630  ax-pr 4691  ax-un 6586  ax-cnex 9558  ax-resscn 9559  ax-1cn 9560  ax-icn 9561  ax-addcl 9562  ax-addrcl 9563  ax-mulcl 9564  ax-mulrcl 9565  ax-mulcom 9566  ax-addass 9567  ax-mulass 9568  ax-distr 9569  ax-i2m1 9570  ax-1ne0 9571  ax-1rid 9572  ax-rnegex 9573  ax-rrecex 9574  ax-cnre 9575  ax-pre-lttri 9576  ax-pre-lttrn 9577  ax-pre-ltadd 9578  ax-pre-mulgt0 9579
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2822  df-rex 2823  df-reu 2824  df-rmo 2825  df-rab 2826  df-v 3120  df-sbc 3337  df-csb 3441  df-dif 3484  df-un 3486  df-in 3488  df-ss 3495  df-pss 3497  df-nul 3791  df-if 3945  df-pw 4017  df-sn 4033  df-pr 4035  df-tp 4037  df-op 4039  df-uni 4251  df-iun 4332  df-br 4453  df-opab 4511  df-mpt 4512  df-tr 4546  df-eprel 4796  df-id 4800  df-po 4805  df-so 4806  df-fr 4843  df-we 4845  df-ord 4886  df-on 4887  df-lim 4888  df-suc 4889  df-xp 5010  df-rel 5011  df-cnv 5012  df-co 5013  df-dm 5014  df-rn 5015  df-res 5016  df-ima 5017  df-iota 5556  df-fun 5595  df-fn 5596  df-f 5597  df-f1 5598  df-fo 5599  df-f1o 5600  df-fv 5601  df-riota 6255  df-ov 6297  df-oprab 6298  df-mpt2 6299  df-om 6695  df-recs 7052  df-rdg 7086  df-er 7321  df-en 7527  df-dom 7528  df-sdom 7529  df-pnf 9640  df-mnf 9641  df-xr 9642  df-ltxr 9643  df-le 9644  df-sub 9817  df-neg 9818  df-nn 10547  df-2 10604  df-3 10605  df-ndx 14505  df-slot 14506  df-base 14507  df-sets 14508  df-ress 14509  df-plusg 14580  df-mulr 14581  df-0g 14709  df-mgm 15741  df-sgrp 15764  df-mnd 15774  df-subg 16047  df-mgp 16991  df-ur 17003  df-ring 17049  df-subrg 17275
This theorem is referenced by:  subsubrg2  17304  subrgmpl  17969  mplbas2  17981  mplbas2OLD  17982  mplind  18014  zringunit  18366  zrngunit  18367  rzgrp  22784
  Copyright terms: Public domain W3C validator