MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subsubrg Structured version   Unicode version

Theorem subsubrg 16896
Description: A subring of a subring is a subring. (Contributed by Mario Carneiro, 4-Dec-2014.)
Hypothesis
Ref Expression
subsubrg.s  |-  S  =  ( Rs  A )
Assertion
Ref Expression
subsubrg  |-  ( A  e.  (SubRing `  R
)  ->  ( B  e.  (SubRing `  S )  <->  ( B  e.  (SubRing `  R
)  /\  B  C_  A
) ) )

Proof of Theorem subsubrg
StepHypRef Expression
1 subrgrcl 16875 . . . . . 6  |-  ( A  e.  (SubRing `  R
)  ->  R  e.  Ring )
21adantr 465 . . . . 5  |-  ( ( A  e.  (SubRing `  R
)  /\  B  e.  (SubRing `  S ) )  ->  R  e.  Ring )
3 eqid 2443 . . . . . . . . . 10  |-  ( Base `  S )  =  (
Base `  S )
43subrgss 16871 . . . . . . . . 9  |-  ( B  e.  (SubRing `  S
)  ->  B  C_  ( Base `  S ) )
54adantl 466 . . . . . . . 8  |-  ( ( A  e.  (SubRing `  R
)  /\  B  e.  (SubRing `  S ) )  ->  B  C_  ( Base `  S ) )
6 subsubrg.s . . . . . . . . . 10  |-  S  =  ( Rs  A )
76subrgbas 16879 . . . . . . . . 9  |-  ( A  e.  (SubRing `  R
)  ->  A  =  ( Base `  S )
)
87adantr 465 . . . . . . . 8  |-  ( ( A  e.  (SubRing `  R
)  /\  B  e.  (SubRing `  S ) )  ->  A  =  (
Base `  S )
)
95, 8sseqtr4d 3398 . . . . . . 7  |-  ( ( A  e.  (SubRing `  R
)  /\  B  e.  (SubRing `  S ) )  ->  B  C_  A
)
106oveq1i 6106 . . . . . . . 8  |-  ( Ss  B )  =  ( ( Rs  A )s  B )
11 ressabs 14241 . . . . . . . 8  |-  ( ( A  e.  (SubRing `  R
)  /\  B  C_  A
)  ->  ( ( Rs  A )s  B )  =  ( Rs  B ) )
1210, 11syl5eq 2487 . . . . . . 7  |-  ( ( A  e.  (SubRing `  R
)  /\  B  C_  A
)  ->  ( Ss  B
)  =  ( Rs  B ) )
139, 12syldan 470 . . . . . 6  |-  ( ( A  e.  (SubRing `  R
)  /\  B  e.  (SubRing `  S ) )  ->  ( Ss  B )  =  ( Rs  B ) )
14 eqid 2443 . . . . . . . 8  |-  ( Ss  B )  =  ( Ss  B )
1514subrgrng 16873 . . . . . . 7  |-  ( B  e.  (SubRing `  S
)  ->  ( Ss  B
)  e.  Ring )
1615adantl 466 . . . . . 6  |-  ( ( A  e.  (SubRing `  R
)  /\  B  e.  (SubRing `  S ) )  ->  ( Ss  B )  e.  Ring )
1713, 16eqeltrrd 2518 . . . . 5  |-  ( ( A  e.  (SubRing `  R
)  /\  B  e.  (SubRing `  S ) )  ->  ( Rs  B )  e.  Ring )
182, 17jca 532 . . . 4  |-  ( ( A  e.  (SubRing `  R
)  /\  B  e.  (SubRing `  S ) )  ->  ( R  e. 
Ring  /\  ( Rs  B )  e.  Ring ) )
19 eqid 2443 . . . . . . . 8  |-  ( Base `  R )  =  (
Base `  R )
2019subrgss 16871 . . . . . . 7  |-  ( A  e.  (SubRing `  R
)  ->  A  C_  ( Base `  R ) )
2120adantr 465 . . . . . 6  |-  ( ( A  e.  (SubRing `  R
)  /\  B  e.  (SubRing `  S ) )  ->  A  C_  ( Base `  R ) )
229, 21sstrd 3371 . . . . 5  |-  ( ( A  e.  (SubRing `  R
)  /\  B  e.  (SubRing `  S ) )  ->  B  C_  ( Base `  R ) )
23 eqid 2443 . . . . . . . 8  |-  ( 1r
`  R )  =  ( 1r `  R
)
246, 23subrg1 16880 . . . . . . 7  |-  ( A  e.  (SubRing `  R
)  ->  ( 1r `  R )  =  ( 1r `  S ) )
2524adantr 465 . . . . . 6  |-  ( ( A  e.  (SubRing `  R
)  /\  B  e.  (SubRing `  S ) )  ->  ( 1r `  R )  =  ( 1r `  S ) )
26 eqid 2443 . . . . . . . 8  |-  ( 1r
`  S )  =  ( 1r `  S
)
2726subrg1cl 16878 . . . . . . 7  |-  ( B  e.  (SubRing `  S
)  ->  ( 1r `  S )  e.  B
)
2827adantl 466 . . . . . 6  |-  ( ( A  e.  (SubRing `  R
)  /\  B  e.  (SubRing `  S ) )  ->  ( 1r `  S )  e.  B
)
2925, 28eqeltrd 2517 . . . . 5  |-  ( ( A  e.  (SubRing `  R
)  /\  B  e.  (SubRing `  S ) )  ->  ( 1r `  R )  e.  B
)
3022, 29jca 532 . . . 4  |-  ( ( A  e.  (SubRing `  R
)  /\  B  e.  (SubRing `  S ) )  ->  ( B  C_  ( Base `  R )  /\  ( 1r `  R
)  e.  B ) )
3119, 23issubrg 16870 . . . 4  |-  ( B  e.  (SubRing `  R
)  <->  ( ( R  e.  Ring  /\  ( Rs  B )  e.  Ring )  /\  ( B  C_  ( Base `  R )  /\  ( 1r `  R
)  e.  B ) ) )
3218, 30, 31sylanbrc 664 . . 3  |-  ( ( A  e.  (SubRing `  R
)  /\  B  e.  (SubRing `  S ) )  ->  B  e.  (SubRing `  R ) )
3332, 9jca 532 . 2  |-  ( ( A  e.  (SubRing `  R
)  /\  B  e.  (SubRing `  S ) )  ->  ( B  e.  (SubRing `  R )  /\  B  C_  A ) )
346subrgrng 16873 . . . . 5  |-  ( A  e.  (SubRing `  R
)  ->  S  e.  Ring )
3534adantr 465 . . . 4  |-  ( ( A  e.  (SubRing `  R
)  /\  ( B  e.  (SubRing `  R )  /\  B  C_  A ) )  ->  S  e.  Ring )
3612adantrl 715 . . . . 5  |-  ( ( A  e.  (SubRing `  R
)  /\  ( B  e.  (SubRing `  R )  /\  B  C_  A ) )  ->  ( Ss  B
)  =  ( Rs  B ) )
37 eqid 2443 . . . . . . 7  |-  ( Rs  B )  =  ( Rs  B )
3837subrgrng 16873 . . . . . 6  |-  ( B  e.  (SubRing `  R
)  ->  ( Rs  B
)  e.  Ring )
3938ad2antrl 727 . . . . 5  |-  ( ( A  e.  (SubRing `  R
)  /\  ( B  e.  (SubRing `  R )  /\  B  C_  A ) )  ->  ( Rs  B
)  e.  Ring )
4036, 39eqeltrd 2517 . . . 4  |-  ( ( A  e.  (SubRing `  R
)  /\  ( B  e.  (SubRing `  R )  /\  B  C_  A ) )  ->  ( Ss  B
)  e.  Ring )
4135, 40jca 532 . . 3  |-  ( ( A  e.  (SubRing `  R
)  /\  ( B  e.  (SubRing `  R )  /\  B  C_  A ) )  ->  ( S  e.  Ring  /\  ( Ss  B
)  e.  Ring )
)
42 simprr 756 . . . . 5  |-  ( ( A  e.  (SubRing `  R
)  /\  ( B  e.  (SubRing `  R )  /\  B  C_  A ) )  ->  B  C_  A
)
437adantr 465 . . . . 5  |-  ( ( A  e.  (SubRing `  R
)  /\  ( B  e.  (SubRing `  R )  /\  B  C_  A ) )  ->  A  =  ( Base `  S )
)
4442, 43sseqtrd 3397 . . . 4  |-  ( ( A  e.  (SubRing `  R
)  /\  ( B  e.  (SubRing `  R )  /\  B  C_  A ) )  ->  B  C_  ( Base `  S ) )
4524adantr 465 . . . . 5  |-  ( ( A  e.  (SubRing `  R
)  /\  ( B  e.  (SubRing `  R )  /\  B  C_  A ) )  ->  ( 1r `  R )  =  ( 1r `  S ) )
4623subrg1cl 16878 . . . . . 6  |-  ( B  e.  (SubRing `  R
)  ->  ( 1r `  R )  e.  B
)
4746ad2antrl 727 . . . . 5  |-  ( ( A  e.  (SubRing `  R
)  /\  ( B  e.  (SubRing `  R )  /\  B  C_  A ) )  ->  ( 1r `  R )  e.  B
)
4845, 47eqeltrrd 2518 . . . 4  |-  ( ( A  e.  (SubRing `  R
)  /\  ( B  e.  (SubRing `  R )  /\  B  C_  A ) )  ->  ( 1r `  S )  e.  B
)
4944, 48jca 532 . . 3  |-  ( ( A  e.  (SubRing `  R
)  /\  ( B  e.  (SubRing `  R )  /\  B  C_  A ) )  ->  ( B  C_  ( Base `  S
)  /\  ( 1r `  S )  e.  B
) )
503, 26issubrg 16870 . . 3  |-  ( B  e.  (SubRing `  S
)  <->  ( ( S  e.  Ring  /\  ( Ss  B )  e.  Ring )  /\  ( B  C_  ( Base `  S )  /\  ( 1r `  S
)  e.  B ) ) )
5141, 49, 50sylanbrc 664 . 2  |-  ( ( A  e.  (SubRing `  R
)  /\  ( B  e.  (SubRing `  R )  /\  B  C_  A ) )  ->  B  e.  (SubRing `  S ) )
5233, 51impbida 828 1  |-  ( A  e.  (SubRing `  R
)  ->  ( B  e.  (SubRing `  S )  <->  ( B  e.  (SubRing `  R
)  /\  B  C_  A
) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1369    e. wcel 1756    C_ wss 3333   ` cfv 5423  (class class class)co 6096   Basecbs 14179   ↾s cress 14180   1rcur 16608   Ringcrg 16650  SubRingcsubrg 16866
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-sep 4418  ax-nul 4426  ax-pow 4475  ax-pr 4536  ax-un 6377  ax-cnex 9343  ax-resscn 9344  ax-1cn 9345  ax-icn 9346  ax-addcl 9347  ax-addrcl 9348  ax-mulcl 9349  ax-mulrcl 9350  ax-mulcom 9351  ax-addass 9352  ax-mulass 9353  ax-distr 9354  ax-i2m1 9355  ax-1ne0 9356  ax-1rid 9357  ax-rnegex 9358  ax-rrecex 9359  ax-cnre 9360  ax-pre-lttri 9361  ax-pre-lttrn 9362  ax-pre-ltadd 9363  ax-pre-mulgt0 9364
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2573  df-ne 2613  df-nel 2614  df-ral 2725  df-rex 2726  df-reu 2727  df-rmo 2728  df-rab 2729  df-v 2979  df-sbc 3192  df-csb 3294  df-dif 3336  df-un 3338  df-in 3340  df-ss 3347  df-pss 3349  df-nul 3643  df-if 3797  df-pw 3867  df-sn 3883  df-pr 3885  df-tp 3887  df-op 3889  df-uni 4097  df-iun 4178  df-br 4298  df-opab 4356  df-mpt 4357  df-tr 4391  df-eprel 4637  df-id 4641  df-po 4646  df-so 4647  df-fr 4684  df-we 4686  df-ord 4727  df-on 4728  df-lim 4729  df-suc 4730  df-xp 4851  df-rel 4852  df-cnv 4853  df-co 4854  df-dm 4855  df-rn 4856  df-res 4857  df-ima 4858  df-iota 5386  df-fun 5425  df-fn 5426  df-f 5427  df-f1 5428  df-fo 5429  df-f1o 5430  df-fv 5431  df-riota 6057  df-ov 6099  df-oprab 6100  df-mpt2 6101  df-om 6482  df-recs 6837  df-rdg 6871  df-er 7106  df-en 7316  df-dom 7317  df-sdom 7318  df-pnf 9425  df-mnf 9426  df-xr 9427  df-ltxr 9428  df-le 9429  df-sub 9602  df-neg 9603  df-nn 10328  df-2 10385  df-3 10386  df-ndx 14182  df-slot 14183  df-base 14184  df-sets 14185  df-ress 14186  df-plusg 14256  df-mulr 14257  df-0g 14385  df-mnd 15420  df-subg 15683  df-mgp 16597  df-ur 16609  df-rng 16652  df-subrg 16868
This theorem is referenced by:  subsubrg2  16897  subrgmpl  17544  mplbas2  17556  mplbas2OLD  17557  mplind  17589  zringunit  17919  zrngunit  17920
  Copyright terms: Public domain W3C validator