MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subsubc Structured version   Unicode version

Theorem subsubc 15259
Description: A subcategory of a subcategory is a subcategory. (Contributed by Mario Carneiro, 6-Jan-2017.)
Hypothesis
Ref Expression
subsubc.d  |-  D  =  ( C  |`cat  H )
Assertion
Ref Expression
subsubc  |-  ( H  e.  (Subcat `  C
)  ->  ( J  e.  (Subcat `  D )  <->  ( J  e.  (Subcat `  C )  /\  J  C_cat  H ) ) )

Proof of Theorem subsubc
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 id 22 . . . . . 6  |-  ( J  e.  (Subcat `  D
)  ->  J  e.  (Subcat `  D ) )
2 eqid 2382 . . . . . 6  |-  ( Hom f  `  D )  =  ( Hom f  `  D )
31, 2subcssc 15246 . . . . 5  |-  ( J  e.  (Subcat `  D
)  ->  J  C_cat  ( Hom f  `  D ) )
4 subsubc.d . . . . . . 7  |-  D  =  ( C  |`cat  H )
5 eqid 2382 . . . . . . 7  |-  ( Base `  C )  =  (
Base `  C )
6 subcrcl 15222 . . . . . . 7  |-  ( H  e.  (Subcat `  C
)  ->  C  e.  Cat )
7 id 22 . . . . . . . 8  |-  ( H  e.  (Subcat `  C
)  ->  H  e.  (Subcat `  C ) )
8 eqidd 2383 . . . . . . . 8  |-  ( H  e.  (Subcat `  C
)  ->  dom  dom  H  =  dom  dom  H )
97, 8subcfn 15247 . . . . . . 7  |-  ( H  e.  (Subcat `  C
)  ->  H  Fn  ( dom  dom  H  X.  dom  dom  H ) )
107, 9, 5subcss1 15248 . . . . . . 7  |-  ( H  e.  (Subcat `  C
)  ->  dom  dom  H  C_  ( Base `  C
) )
114, 5, 6, 9, 10reschomf 15237 . . . . . 6  |-  ( H  e.  (Subcat `  C
)  ->  H  =  ( Hom f  `  D ) )
1211breq2d 4379 . . . . 5  |-  ( H  e.  (Subcat `  C
)  ->  ( J  C_cat  H  <-> 
J  C_cat  ( Hom f  `  D ) ) )
133, 12syl5ibr 221 . . . 4  |-  ( H  e.  (Subcat `  C
)  ->  ( J  e.  (Subcat `  D )  ->  J  C_cat  H ) )
1413pm4.71rd 633 . . 3  |-  ( H  e.  (Subcat `  C
)  ->  ( J  e.  (Subcat `  D )  <->  ( J  C_cat  H  /\  J  e.  (Subcat `  D )
) ) )
15 simpr 459 . . . . . . . 8  |-  ( ( H  e.  (Subcat `  C )  /\  J  C_cat  H )  ->  J  C_cat  H )
16 simpl 455 . . . . . . . . 9  |-  ( ( H  e.  (Subcat `  C )  /\  J  C_cat  H )  ->  H  e.  (Subcat `  C ) )
17 eqid 2382 . . . . . . . . 9  |-  ( Hom f  `  C )  =  ( Hom f  `  C )
1816, 17subcssc 15246 . . . . . . . 8  |-  ( ( H  e.  (Subcat `  C )  /\  J  C_cat  H )  ->  H  C_cat  ( Hom f  `  C ) )
19 ssctr 15231 . . . . . . . 8  |-  ( ( J  C_cat  H  /\  H  C_cat  ( Hom f  `  C ) )  ->  J  C_cat  ( Hom f  `  C ) )
2015, 18, 19syl2anc 659 . . . . . . 7  |-  ( ( H  e.  (Subcat `  C )  /\  J  C_cat  H )  ->  J  C_cat  ( Hom f  `  C ) )
2112biimpa 482 . . . . . . 7  |-  ( ( H  e.  (Subcat `  C )  /\  J  C_cat  H )  ->  J  C_cat  ( Hom f  `  D ) )
2220, 212thd 240 . . . . . 6  |-  ( ( H  e.  (Subcat `  C )  /\  J  C_cat  H )  ->  ( J  C_cat  ( Hom f  `  C )  <->  J  C_cat  ( Hom f  `  D ) ) )
2316adantr 463 . . . . . . . . 9  |-  ( ( ( H  e.  (Subcat `  C )  /\  J  C_cat  H )  /\  x  e. 
dom  dom  J )  ->  H  e.  (Subcat `  C
) )
249adantr 463 . . . . . . . . . 10  |-  ( ( H  e.  (Subcat `  C )  /\  J  C_cat  H )  ->  H  Fn  ( dom  dom  H  X.  dom  dom  H ) )
2524adantr 463 . . . . . . . . 9  |-  ( ( ( H  e.  (Subcat `  C )  /\  J  C_cat  H )  /\  x  e. 
dom  dom  J )  ->  H  Fn  ( dom  dom 
H  X.  dom  dom  H ) )
26 eqid 2382 . . . . . . . . 9  |-  ( Id
`  C )  =  ( Id `  C
)
27 eqidd 2383 . . . . . . . . . . . 12  |-  ( ( H  e.  (Subcat `  C )  /\  J  C_cat  H )  ->  dom  dom  J  =  dom  dom  J )
2815, 27sscfn1 15223 . . . . . . . . . . 11  |-  ( ( H  e.  (Subcat `  C )  /\  J  C_cat  H )  ->  J  Fn  ( dom  dom  J  X.  dom  dom  J ) )
2928, 24, 15ssc1 15227 . . . . . . . . . 10  |-  ( ( H  e.  (Subcat `  C )  /\  J  C_cat  H )  ->  dom  dom  J  C_ 
dom  dom  H )
3029sselda 3417 . . . . . . . . 9  |-  ( ( ( H  e.  (Subcat `  C )  /\  J  C_cat  H )  /\  x  e. 
dom  dom  J )  ->  x  e.  dom  dom  H
)
314, 23, 25, 26, 30subcid 15253 . . . . . . . 8  |-  ( ( ( H  e.  (Subcat `  C )  /\  J  C_cat  H )  /\  x  e. 
dom  dom  J )  -> 
( ( Id `  C ) `  x
)  =  ( ( Id `  D ) `
 x ) )
3231eleq1d 2451 . . . . . . 7  |-  ( ( ( H  e.  (Subcat `  C )  /\  J  C_cat  H )  /\  x  e. 
dom  dom  J )  -> 
( ( ( Id
`  C ) `  x )  e.  ( x J x )  <-> 
( ( Id `  D ) `  x
)  e.  ( x J x ) ) )
3332ralbidva 2818 . . . . . 6  |-  ( ( H  e.  (Subcat `  C )  /\  J  C_cat  H )  ->  ( A. x  e.  dom  dom  J
( ( Id `  C ) `  x
)  e.  ( x J x )  <->  A. x  e.  dom  dom  J (
( Id `  D
) `  x )  e.  ( x J x ) ) )
344oveq1i 6206 . . . . . . . 8  |-  ( D  |`cat 
J )  =  ( ( C  |`cat  H )  |`cat  J )
356adantr 463 . . . . . . . . 9  |-  ( ( H  e.  (Subcat `  C )  /\  J  C_cat  H )  ->  C  e.  Cat )
36 dmexg 6630 . . . . . . . . . . 11  |-  ( H  e.  (Subcat `  C
)  ->  dom  H  e. 
_V )
37 dmexg 6630 . . . . . . . . . . 11  |-  ( dom 
H  e.  _V  ->  dom 
dom  H  e.  _V )
3836, 37syl 16 . . . . . . . . . 10  |-  ( H  e.  (Subcat `  C
)  ->  dom  dom  H  e.  _V )
3938adantr 463 . . . . . . . . 9  |-  ( ( H  e.  (Subcat `  C )  /\  J  C_cat  H )  ->  dom  dom  H  e.  _V )
4035, 24, 28, 39, 29rescabs 15239 . . . . . . . 8  |-  ( ( H  e.  (Subcat `  C )  /\  J  C_cat  H )  ->  ( ( C  |`cat  H )  |`cat  J )  =  ( C  |`cat  J
) )
4134, 40syl5req 2436 . . . . . . 7  |-  ( ( H  e.  (Subcat `  C )  /\  J  C_cat  H )  ->  ( C  |`cat  J )  =  ( D  |`cat 
J ) )
4241eleq1d 2451 . . . . . 6  |-  ( ( H  e.  (Subcat `  C )  /\  J  C_cat  H )  ->  ( ( C  |`cat  J )  e.  Cat  <->  ( D  |`cat  J )  e.  Cat ) )
4322, 33, 423anbi123d 1297 . . . . 5  |-  ( ( H  e.  (Subcat `  C )  /\  J  C_cat  H )  ->  ( ( J  C_cat  ( Hom f  `  C )  /\  A. x  e.  dom  dom  J ( ( Id `  C ) `  x
)  e.  ( x J x )  /\  ( C  |`cat  J )  e.  Cat ) 
<->  ( J  C_cat  ( Hom f  `  D )  /\  A. x  e.  dom  dom  J
( ( Id `  D ) `  x
)  e.  ( x J x )  /\  ( D  |`cat  J )  e.  Cat ) ) )
44 eqid 2382 . . . . . 6  |-  ( C  |`cat 
J )  =  ( C  |`cat  J )
4517, 26, 44, 35, 28issubc3 15255 . . . . 5  |-  ( ( H  e.  (Subcat `  C )  /\  J  C_cat  H )  ->  ( J  e.  (Subcat `  C )  <->  ( J  C_cat  ( Hom f  `  C )  /\  A. x  e.  dom  dom  J ( ( Id `  C ) `  x
)  e.  ( x J x )  /\  ( C  |`cat  J )  e.  Cat ) ) )
46 eqid 2382 . . . . . 6  |-  ( Id
`  D )  =  ( Id `  D
)
47 eqid 2382 . . . . . 6  |-  ( D  |`cat 
J )  =  ( D  |`cat  J )
484, 7subccat 15254 . . . . . . 7  |-  ( H  e.  (Subcat `  C
)  ->  D  e.  Cat )
4948adantr 463 . . . . . 6  |-  ( ( H  e.  (Subcat `  C )  /\  J  C_cat  H )  ->  D  e.  Cat )
502, 46, 47, 49, 28issubc3 15255 . . . . 5  |-  ( ( H  e.  (Subcat `  C )  /\  J  C_cat  H )  ->  ( J  e.  (Subcat `  D )  <->  ( J  C_cat  ( Hom f  `  D )  /\  A. x  e.  dom  dom  J ( ( Id `  D ) `  x
)  e.  ( x J x )  /\  ( D  |`cat  J )  e.  Cat ) ) )
5143, 45, 503bitr4rd 286 . . . 4  |-  ( ( H  e.  (Subcat `  C )  /\  J  C_cat  H )  ->  ( J  e.  (Subcat `  D )  <->  J  e.  (Subcat `  C
) ) )
5251pm5.32da 639 . . 3  |-  ( H  e.  (Subcat `  C
)  ->  ( ( J  C_cat  H  /\  J  e.  (Subcat `  D )
)  <->  ( J  C_cat  H  /\  J  e.  (Subcat `  C ) ) ) )
5314, 52bitrd 253 . 2  |-  ( H  e.  (Subcat `  C
)  ->  ( J  e.  (Subcat `  D )  <->  ( J  C_cat  H  /\  J  e.  (Subcat `  C )
) ) )
54 ancom 448 . 2  |-  ( ( J  C_cat  H  /\  J  e.  (Subcat `  C )
)  <->  ( J  e.  (Subcat `  C )  /\  J  C_cat  H )
)
5553, 54syl6bb 261 1  |-  ( H  e.  (Subcat `  C
)  ->  ( J  e.  (Subcat `  D )  <->  ( J  e.  (Subcat `  C )  /\  J  C_cat  H ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 367    /\ w3a 971    = wceq 1399    e. wcel 1826   A.wral 2732   _Vcvv 3034   class class class wbr 4367    X. cxp 4911   dom cdm 4913    Fn wfn 5491   ` cfv 5496  (class class class)co 6196   Basecbs 14634   Catccat 15071   Idccid 15072   Hom f chomf 15073    C_cat cssc 15213    |`cat cresc 15214  Subcatcsubc 15215
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1626  ax-4 1639  ax-5 1712  ax-6 1755  ax-7 1798  ax-8 1828  ax-9 1830  ax-10 1845  ax-11 1850  ax-12 1862  ax-13 2006  ax-ext 2360  ax-rep 4478  ax-sep 4488  ax-nul 4496  ax-pow 4543  ax-pr 4601  ax-un 6491  ax-cnex 9459  ax-resscn 9460  ax-1cn 9461  ax-icn 9462  ax-addcl 9463  ax-addrcl 9464  ax-mulcl 9465  ax-mulrcl 9466  ax-mulcom 9467  ax-addass 9468  ax-mulass 9469  ax-distr 9470  ax-i2m1 9471  ax-1ne0 9472  ax-1rid 9473  ax-rnegex 9474  ax-rrecex 9475  ax-cnre 9476  ax-pre-lttri 9477  ax-pre-lttrn 9478  ax-pre-ltadd 9479  ax-pre-mulgt0 9480
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 972  df-3an 973  df-tru 1402  df-fal 1405  df-ex 1621  df-nf 1625  df-sb 1748  df-eu 2222  df-mo 2223  df-clab 2368  df-cleq 2374  df-clel 2377  df-nfc 2532  df-ne 2579  df-nel 2580  df-ral 2737  df-rex 2738  df-reu 2739  df-rmo 2740  df-rab 2741  df-v 3036  df-sbc 3253  df-csb 3349  df-dif 3392  df-un 3394  df-in 3396  df-ss 3403  df-pss 3405  df-nul 3712  df-if 3858  df-pw 3929  df-sn 3945  df-pr 3947  df-tp 3949  df-op 3951  df-uni 4164  df-iun 4245  df-br 4368  df-opab 4426  df-mpt 4427  df-tr 4461  df-eprel 4705  df-id 4709  df-po 4714  df-so 4715  df-fr 4752  df-we 4754  df-ord 4795  df-on 4796  df-lim 4797  df-suc 4798  df-xp 4919  df-rel 4920  df-cnv 4921  df-co 4922  df-dm 4923  df-rn 4924  df-res 4925  df-ima 4926  df-iota 5460  df-fun 5498  df-fn 5499  df-f 5500  df-f1 5501  df-fo 5502  df-f1o 5503  df-fv 5504  df-riota 6158  df-ov 6199  df-oprab 6200  df-mpt2 6201  df-om 6600  df-1st 6699  df-2nd 6700  df-recs 6960  df-rdg 6994  df-er 7229  df-pm 7341  df-ixp 7389  df-en 7436  df-dom 7437  df-sdom 7438  df-pnf 9541  df-mnf 9542  df-xr 9543  df-ltxr 9544  df-le 9545  df-sub 9720  df-neg 9721  df-nn 10453  df-2 10511  df-3 10512  df-4 10513  df-5 10514  df-6 10515  df-7 10516  df-8 10517  df-9 10518  df-10 10519  df-n0 10713  df-z 10782  df-dec 10896  df-ndx 14637  df-slot 14638  df-base 14639  df-sets 14640  df-ress 14641  df-hom 14726  df-cco 14727  df-cat 15075  df-cid 15076  df-homf 15077  df-ssc 15216  df-resc 15217  df-subc 15218
This theorem is referenced by:  fldhmsubc  33092  fldhmsubcALTV  33111
  Copyright terms: Public domain W3C validator