MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subsub2 Structured version   Unicode version

Theorem subsub2 9901
Description: Law for double subtraction. (Contributed by NM, 30-Jun-2005.) (Revised by Mario Carneiro, 27-May-2016.)
Assertion
Ref Expression
subsub2  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  ( A  -  ( B  -  C ) )  =  ( A  +  ( C  -  B ) ) )

Proof of Theorem subsub2
StepHypRef Expression
1 subcl 9873 . . . . 5  |-  ( ( B  e.  CC  /\  C  e.  CC )  ->  ( B  -  C
)  e.  CC )
213adant1 1023 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  ( B  -  C )  e.  CC )
3 simp1 1005 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  A  e.  CC )
4 simp3 1007 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  C  e.  CC )
5 simp2 1006 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  B  e.  CC )
6 subcl 9873 . . . . 5  |-  ( ( C  e.  CC  /\  B  e.  CC )  ->  ( C  -  B
)  e.  CC )
74, 5, 6syl2anc 665 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  ( C  -  B )  e.  CC )
82, 3, 7add12d 9855 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  (
( B  -  C
)  +  ( A  +  ( C  -  B ) ) )  =  ( A  +  ( ( B  -  C )  +  ( C  -  B ) ) ) )
9 npncan2 9900 . . . . 5  |-  ( ( B  e.  CC  /\  C  e.  CC )  ->  ( ( B  -  C )  +  ( C  -  B ) )  =  0 )
1093adant1 1023 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  (
( B  -  C
)  +  ( C  -  B ) )  =  0 )
1110oveq2d 6321 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  ( A  +  ( ( B  -  C )  +  ( C  -  B ) ) )  =  ( A  + 
0 ) )
123addid1d 9832 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  ( A  +  0 )  =  A )
138, 11, 123eqtrd 2474 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  (
( B  -  C
)  +  ( A  +  ( C  -  B ) ) )  =  A )
143, 7addcld 9661 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  ( A  +  ( C  -  B ) )  e.  CC )
15 subadd 9877 . . 3  |-  ( ( A  e.  CC  /\  ( B  -  C
)  e.  CC  /\  ( A  +  ( C  -  B )
)  e.  CC )  ->  ( ( A  -  ( B  -  C ) )  =  ( A  +  ( C  -  B ) )  <->  ( ( B  -  C )  +  ( A  +  ( C  -  B ) ) )  =  A ) )
163, 2, 14, 15syl3anc 1264 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  (
( A  -  ( B  -  C )
)  =  ( A  +  ( C  -  B ) )  <->  ( ( B  -  C )  +  ( A  +  ( C  -  B
) ) )  =  A ) )
1713, 16mpbird 235 1  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  ( A  -  ( B  -  C ) )  =  ( A  +  ( C  -  B ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 187    /\ w3a 982    = wceq 1437    e. wcel 1870  (class class class)co 6305   CCcc 9536   0cc0 9538    + caddc 9541    - cmin 9859
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1751  ax-6 1797  ax-7 1841  ax-8 1872  ax-9 1874  ax-10 1889  ax-11 1894  ax-12 1907  ax-13 2055  ax-ext 2407  ax-sep 4548  ax-nul 4556  ax-pow 4603  ax-pr 4661  ax-un 6597  ax-resscn 9595  ax-1cn 9596  ax-icn 9597  ax-addcl 9598  ax-addrcl 9599  ax-mulcl 9600  ax-mulrcl 9601  ax-mulcom 9602  ax-addass 9603  ax-mulass 9604  ax-distr 9605  ax-i2m1 9606  ax-1ne0 9607  ax-1rid 9608  ax-rnegex 9609  ax-rrecex 9610  ax-cnre 9611  ax-pre-lttri 9612  ax-pre-lttrn 9613  ax-pre-ltadd 9614
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3or 983  df-3an 984  df-tru 1440  df-ex 1660  df-nf 1664  df-sb 1790  df-eu 2270  df-mo 2271  df-clab 2415  df-cleq 2421  df-clel 2424  df-nfc 2579  df-ne 2627  df-nel 2628  df-ral 2787  df-rex 2788  df-reu 2789  df-rab 2791  df-v 3089  df-sbc 3306  df-csb 3402  df-dif 3445  df-un 3447  df-in 3449  df-ss 3456  df-nul 3768  df-if 3916  df-pw 3987  df-sn 4003  df-pr 4005  df-op 4009  df-uni 4223  df-br 4427  df-opab 4485  df-mpt 4486  df-id 4769  df-po 4775  df-so 4776  df-xp 4860  df-rel 4861  df-cnv 4862  df-co 4863  df-dm 4864  df-rn 4865  df-res 4866  df-ima 4867  df-iota 5565  df-fun 5603  df-fn 5604  df-f 5605  df-f1 5606  df-fo 5607  df-f1o 5608  df-fv 5609  df-riota 6267  df-ov 6308  df-oprab 6309  df-mpt2 6310  df-er 7371  df-en 7578  df-dom 7579  df-sdom 7580  df-pnf 9676  df-mnf 9677  df-ltxr 9679  df-sub 9861
This theorem is referenced by:  nncan  9902  subsub  9903  subsub3  9905  ppncan  9915  subadd4  9917  subsub2d  10014  divalglem9  14357  ax5seglem7  24811  areaquad  35800  sub31  37113
  Copyright terms: Public domain W3C validator