MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subsub2 Structured version   Unicode version

Theorem subsub2 9847
Description: Law for double subtraction. (Contributed by NM, 30-Jun-2005.) (Revised by Mario Carneiro, 27-May-2016.)
Assertion
Ref Expression
subsub2  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  ( A  -  ( B  -  C ) )  =  ( A  +  ( C  -  B ) ) )

Proof of Theorem subsub2
StepHypRef Expression
1 subcl 9819 . . . . 5  |-  ( ( B  e.  CC  /\  C  e.  CC )  ->  ( B  -  C
)  e.  CC )
213adant1 1014 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  ( B  -  C )  e.  CC )
3 simp1 996 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  A  e.  CC )
4 simp3 998 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  C  e.  CC )
5 simp2 997 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  B  e.  CC )
6 subcl 9819 . . . . 5  |-  ( ( C  e.  CC  /\  B  e.  CC )  ->  ( C  -  B
)  e.  CC )
74, 5, 6syl2anc 661 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  ( C  -  B )  e.  CC )
82, 3, 7add12d 9801 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  (
( B  -  C
)  +  ( A  +  ( C  -  B ) ) )  =  ( A  +  ( ( B  -  C )  +  ( C  -  B ) ) ) )
9 npncan2 9846 . . . . 5  |-  ( ( B  e.  CC  /\  C  e.  CC )  ->  ( ( B  -  C )  +  ( C  -  B ) )  =  0 )
1093adant1 1014 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  (
( B  -  C
)  +  ( C  -  B ) )  =  0 )
1110oveq2d 6300 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  ( A  +  ( ( B  -  C )  +  ( C  -  B ) ) )  =  ( A  + 
0 ) )
123addid1d 9779 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  ( A  +  0 )  =  A )
138, 11, 123eqtrd 2512 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  (
( B  -  C
)  +  ( A  +  ( C  -  B ) ) )  =  A )
143, 7addcld 9615 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  ( A  +  ( C  -  B ) )  e.  CC )
15 subadd 9823 . . 3  |-  ( ( A  e.  CC  /\  ( B  -  C
)  e.  CC  /\  ( A  +  ( C  -  B )
)  e.  CC )  ->  ( ( A  -  ( B  -  C ) )  =  ( A  +  ( C  -  B ) )  <->  ( ( B  -  C )  +  ( A  +  ( C  -  B ) ) )  =  A ) )
163, 2, 14, 15syl3anc 1228 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  (
( A  -  ( B  -  C )
)  =  ( A  +  ( C  -  B ) )  <->  ( ( B  -  C )  +  ( A  +  ( C  -  B
) ) )  =  A ) )
1713, 16mpbird 232 1  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  ( A  -  ( B  -  C ) )  =  ( A  +  ( C  -  B ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ w3a 973    = wceq 1379    e. wcel 1767  (class class class)co 6284   CCcc 9490   0cc0 9492    + caddc 9495    - cmin 9805
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6576  ax-resscn 9549  ax-1cn 9550  ax-icn 9551  ax-addcl 9552  ax-addrcl 9553  ax-mulcl 9554  ax-mulrcl 9555  ax-mulcom 9556  ax-addass 9557  ax-mulass 9558  ax-distr 9559  ax-i2m1 9560  ax-1ne0 9561  ax-1rid 9562  ax-rnegex 9563  ax-rrecex 9564  ax-cnre 9565  ax-pre-lttri 9566  ax-pre-lttrn 9567  ax-pre-ltadd 9568
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2819  df-rex 2820  df-reu 2821  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-op 4034  df-uni 4246  df-br 4448  df-opab 4506  df-mpt 4507  df-id 4795  df-po 4800  df-so 4801  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5551  df-fun 5590  df-fn 5591  df-f 5592  df-f1 5593  df-fo 5594  df-f1o 5595  df-fv 5596  df-riota 6245  df-ov 6287  df-oprab 6288  df-mpt2 6289  df-er 7311  df-en 7517  df-dom 7518  df-sdom 7519  df-pnf 9630  df-mnf 9631  df-ltxr 9633  df-sub 9807
This theorem is referenced by:  nncan  9848  subsub  9849  subsub3  9851  ppncan  9861  subadd4  9863  subsub2d  9959  divalglem9  13918  ax5seglem7  23942  areaquad  30817  sub31  31084
  Copyright terms: Public domain W3C validator