MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subsq Structured version   Unicode version

Theorem subsq 12322
Description: Factor the difference of two squares. (Contributed by NM, 21-Feb-2008.)
Assertion
Ref Expression
subsq  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A ^
2 )  -  ( B ^ 2 ) )  =  ( ( A  +  B )  x.  ( A  -  B
) ) )

Proof of Theorem subsq
StepHypRef Expression
1 simpl 457 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  A  e.  CC )
2 simpr 461 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  B  e.  CC )
3 subcl 9857 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  -  B
)  e.  CC )
41, 2, 3adddird 9653 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  +  B )  x.  ( A  -  B )
)  =  ( ( A  x.  ( A  -  B ) )  +  ( B  x.  ( A  -  B
) ) ) )
5 subdi 10033 . . . . 5  |-  ( ( A  e.  CC  /\  A  e.  CC  /\  B  e.  CC )  ->  ( A  x.  ( A  -  B ) )  =  ( ( A  x.  A )  -  ( A  x.  B )
) )
653anidm12 1289 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  x.  ( A  -  B )
)  =  ( ( A  x.  A )  -  ( A  x.  B ) ) )
7 sqval 12274 . . . . . 6  |-  ( A  e.  CC  ->  ( A ^ 2 )  =  ( A  x.  A
) )
87adantr 465 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A ^ 2 )  =  ( A  x.  A ) )
98oveq1d 6295 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A ^
2 )  -  ( A  x.  B )
)  =  ( ( A  x.  A )  -  ( A  x.  B ) ) )
106, 9eqtr4d 2448 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  x.  ( A  -  B )
)  =  ( ( A ^ 2 )  -  ( A  x.  B ) ) )
112, 1, 2subdid 10055 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( B  x.  ( A  -  B )
)  =  ( ( B  x.  A )  -  ( B  x.  B ) ) )
12 mulcom 9610 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  x.  B
)  =  ( B  x.  A ) )
13 sqval 12274 . . . . . 6  |-  ( B  e.  CC  ->  ( B ^ 2 )  =  ( B  x.  B
) )
1413adantl 466 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( B ^ 2 )  =  ( B  x.  B ) )
1512, 14oveq12d 6298 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  x.  B )  -  ( B ^ 2 ) )  =  ( ( B  x.  A )  -  ( B  x.  B
) ) )
1611, 15eqtr4d 2448 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( B  x.  ( A  -  B )
)  =  ( ( A  x.  B )  -  ( B ^
2 ) ) )
1710, 16oveq12d 6298 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  x.  ( A  -  B
) )  +  ( B  x.  ( A  -  B ) ) )  =  ( ( ( A ^ 2 )  -  ( A  x.  B ) )  +  ( ( A  x.  B )  -  ( B ^ 2 ) ) ) )
18 sqcl 12277 . . . 4  |-  ( A  e.  CC  ->  ( A ^ 2 )  e.  CC )
1918adantr 465 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A ^ 2 )  e.  CC )
20 mulcl 9608 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  x.  B
)  e.  CC )
21 sqcl 12277 . . . 4  |-  ( B  e.  CC  ->  ( B ^ 2 )  e.  CC )
2221adantl 466 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( B ^ 2 )  e.  CC )
2319, 20, 22npncand 9993 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( A ^ 2 )  -  ( A  x.  B
) )  +  ( ( A  x.  B
)  -  ( B ^ 2 ) ) )  =  ( ( A ^ 2 )  -  ( B ^
2 ) ) )
244, 17, 233eqtrrd 2450 1  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A ^
2 )  -  ( B ^ 2 ) )  =  ( ( A  +  B )  x.  ( A  -  B
) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1407    e. wcel 1844  (class class class)co 6280   CCcc 9522    + caddc 9527    x. cmul 9529    - cmin 9843   2c2 10628   ^cexp 12212
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1641  ax-4 1654  ax-5 1727  ax-6 1773  ax-7 1816  ax-8 1846  ax-9 1848  ax-10 1863  ax-11 1868  ax-12 1880  ax-13 2028  ax-ext 2382  ax-sep 4519  ax-nul 4527  ax-pow 4574  ax-pr 4632  ax-un 6576  ax-cnex 9580  ax-resscn 9581  ax-1cn 9582  ax-icn 9583  ax-addcl 9584  ax-addrcl 9585  ax-mulcl 9586  ax-mulrcl 9587  ax-mulcom 9588  ax-addass 9589  ax-mulass 9590  ax-distr 9591  ax-i2m1 9592  ax-1ne0 9593  ax-1rid 9594  ax-rnegex 9595  ax-rrecex 9596  ax-cnre 9597  ax-pre-lttri 9598  ax-pre-lttrn 9599  ax-pre-ltadd 9600  ax-pre-mulgt0 9601
This theorem depends on definitions:  df-bi 187  df-or 370  df-an 371  df-3or 977  df-3an 978  df-tru 1410  df-ex 1636  df-nf 1640  df-sb 1766  df-eu 2244  df-mo 2245  df-clab 2390  df-cleq 2396  df-clel 2399  df-nfc 2554  df-ne 2602  df-nel 2603  df-ral 2761  df-rex 2762  df-reu 2763  df-rab 2765  df-v 3063  df-sbc 3280  df-csb 3376  df-dif 3419  df-un 3421  df-in 3423  df-ss 3430  df-pss 3432  df-nul 3741  df-if 3888  df-pw 3959  df-sn 3975  df-pr 3977  df-tp 3979  df-op 3981  df-uni 4194  df-iun 4275  df-br 4398  df-opab 4456  df-mpt 4457  df-tr 4492  df-eprel 4736  df-id 4740  df-po 4746  df-so 4747  df-fr 4784  df-we 4786  df-xp 4831  df-rel 4832  df-cnv 4833  df-co 4834  df-dm 4835  df-rn 4836  df-res 4837  df-ima 4838  df-pred 5369  df-ord 5415  df-on 5416  df-lim 5417  df-suc 5418  df-iota 5535  df-fun 5573  df-fn 5574  df-f 5575  df-f1 5576  df-fo 5577  df-f1o 5578  df-fv 5579  df-riota 6242  df-ov 6283  df-oprab 6284  df-mpt2 6285  df-om 6686  df-2nd 6787  df-wrecs 7015  df-recs 7077  df-rdg 7115  df-er 7350  df-en 7557  df-dom 7558  df-sdom 7559  df-pnf 9662  df-mnf 9663  df-xr 9664  df-ltxr 9665  df-le 9666  df-sub 9845  df-neg 9846  df-nn 10579  df-2 10637  df-n0 10839  df-z 10908  df-uz 11130  df-seq 12154  df-exp 12213
This theorem is referenced by:  subsq2  12323  subsqi  12325  pythagtriplem4  14554  pythagtriplem6  14556  pythagtriplem7  14557  pythagtriplem12  14561  pythagtriplem14  14563  pythagtriplem16  14565  4sqlem8  14674  4sqlem10  14676  4sqlem11  14684  chordthmlem4  23493  heron  23496  dcubic2  23502  cubic  23507  dquart  23511  asinlem2  23527  asinsin  23550  efiatan2  23575  atans2  23589  dvatan  23593  wilthlem1  23725  lgslem1  23954  lgsqrlem2  24000  2sqlem4  24025  2sqblem  24035  rplogsumlem1  24052  2sqmod  28101  pellexlem2  35140  pell1234qrne0  35163  pell1234qrreccl  35164  pell1234qrmulcl  35165  pell14qrdich  35179  rmxyneg  35230  stoweidlem1  37164
  Copyright terms: Public domain W3C validator