MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subrgunit Structured version   Unicode version

Theorem subrgunit 16888
Description: An element of a ring is a unit of a subring iff it is a unit of the parent ring and both it and its inverse are in the subring. (Contributed by Mario Carneiro, 4-Dec-2014.)
Hypotheses
Ref Expression
subrgugrp.1  |-  S  =  ( Rs  A )
subrgugrp.2  |-  U  =  (Unit `  R )
subrgugrp.3  |-  V  =  (Unit `  S )
subrgunit.4  |-  I  =  ( invr `  R
)
Assertion
Ref Expression
subrgunit  |-  ( A  e.  (SubRing `  R
)  ->  ( X  e.  V  <->  ( X  e.  U  /\  X  e.  A  /\  ( I `
 X )  e.  A ) ) )

Proof of Theorem subrgunit
StepHypRef Expression
1 subrgugrp.1 . . . . 5  |-  S  =  ( Rs  A )
2 subrgugrp.2 . . . . 5  |-  U  =  (Unit `  R )
3 subrgugrp.3 . . . . 5  |-  V  =  (Unit `  S )
41, 2, 3subrguss 16885 . . . 4  |-  ( A  e.  (SubRing `  R
)  ->  V  C_  U
)
54sselda 3361 . . 3  |-  ( ( A  e.  (SubRing `  R
)  /\  X  e.  V )  ->  X  e.  U )
6 eqid 2443 . . . . . 6  |-  ( Base `  S )  =  (
Base `  S )
76, 3unitcl 16756 . . . . 5  |-  ( X  e.  V  ->  X  e.  ( Base `  S
) )
87adantl 466 . . . 4  |-  ( ( A  e.  (SubRing `  R
)  /\  X  e.  V )  ->  X  e.  ( Base `  S
) )
91subrgbas 16879 . . . . 5  |-  ( A  e.  (SubRing `  R
)  ->  A  =  ( Base `  S )
)
109adantr 465 . . . 4  |-  ( ( A  e.  (SubRing `  R
)  /\  X  e.  V )  ->  A  =  ( Base `  S
) )
118, 10eleqtrrd 2520 . . 3  |-  ( ( A  e.  (SubRing `  R
)  /\  X  e.  V )  ->  X  e.  A )
121subrgrng 16873 . . . . 5  |-  ( A  e.  (SubRing `  R
)  ->  S  e.  Ring )
13 eqid 2443 . . . . . 6  |-  ( invr `  S )  =  (
invr `  S )
143, 13, 6rnginvcl 16773 . . . . 5  |-  ( ( S  e.  Ring  /\  X  e.  V )  ->  (
( invr `  S ) `  X )  e.  (
Base `  S )
)
1512, 14sylan 471 . . . 4  |-  ( ( A  e.  (SubRing `  R
)  /\  X  e.  V )  ->  (
( invr `  S ) `  X )  e.  (
Base `  S )
)
16 subrgunit.4 . . . . 5  |-  I  =  ( invr `  R
)
171, 16, 3, 13subrginv 16886 . . . 4  |-  ( ( A  e.  (SubRing `  R
)  /\  X  e.  V )  ->  (
I `  X )  =  ( ( invr `  S ) `  X
) )
1815, 17, 103eltr4d 2524 . . 3  |-  ( ( A  e.  (SubRing `  R
)  /\  X  e.  V )  ->  (
I `  X )  e.  A )
195, 11, 183jca 1168 . 2  |-  ( ( A  e.  (SubRing `  R
)  /\  X  e.  V )  ->  ( X  e.  U  /\  X  e.  A  /\  ( I `  X
)  e.  A ) )
20 simpr2 995 . . . . . 6  |-  ( ( A  e.  (SubRing `  R
)  /\  ( X  e.  U  /\  X  e.  A  /\  ( I `
 X )  e.  A ) )  ->  X  e.  A )
219adantr 465 . . . . . 6  |-  ( ( A  e.  (SubRing `  R
)  /\  ( X  e.  U  /\  X  e.  A  /\  ( I `
 X )  e.  A ) )  ->  A  =  ( Base `  S ) )
2220, 21eleqtrd 2519 . . . . 5  |-  ( ( A  e.  (SubRing `  R
)  /\  ( X  e.  U  /\  X  e.  A  /\  ( I `
 X )  e.  A ) )  ->  X  e.  ( Base `  S ) )
23 simpr3 996 . . . . . 6  |-  ( ( A  e.  (SubRing `  R
)  /\  ( X  e.  U  /\  X  e.  A  /\  ( I `
 X )  e.  A ) )  -> 
( I `  X
)  e.  A )
2423, 21eleqtrd 2519 . . . . 5  |-  ( ( A  e.  (SubRing `  R
)  /\  ( X  e.  U  /\  X  e.  A  /\  ( I `
 X )  e.  A ) )  -> 
( I `  X
)  e.  ( Base `  S ) )
25 eqid 2443 . . . . . 6  |-  ( ||r `  S
)  =  ( ||r `  S
)
26 eqid 2443 . . . . . 6  |-  ( .r
`  S )  =  ( .r `  S
)
276, 25, 26dvdsrmul 16745 . . . . 5  |-  ( ( X  e.  ( Base `  S )  /\  (
I `  X )  e.  ( Base `  S
) )  ->  X
( ||r `
 S ) ( ( I `  X
) ( .r `  S ) X ) )
2822, 24, 27syl2anc 661 . . . 4  |-  ( ( A  e.  (SubRing `  R
)  /\  ( X  e.  U  /\  X  e.  A  /\  ( I `
 X )  e.  A ) )  ->  X ( ||r `
 S ) ( ( I `  X
) ( .r `  S ) X ) )
29 subrgrcl 16875 . . . . . . 7  |-  ( A  e.  (SubRing `  R
)  ->  R  e.  Ring )
3029adantr 465 . . . . . 6  |-  ( ( A  e.  (SubRing `  R
)  /\  ( X  e.  U  /\  X  e.  A  /\  ( I `
 X )  e.  A ) )  ->  R  e.  Ring )
31 simpr1 994 . . . . . 6  |-  ( ( A  e.  (SubRing `  R
)  /\  ( X  e.  U  /\  X  e.  A  /\  ( I `
 X )  e.  A ) )  ->  X  e.  U )
32 eqid 2443 . . . . . . 7  |-  ( .r
`  R )  =  ( .r `  R
)
33 eqid 2443 . . . . . . 7  |-  ( 1r
`  R )  =  ( 1r `  R
)
342, 16, 32, 33unitlinv 16774 . . . . . 6  |-  ( ( R  e.  Ring  /\  X  e.  U )  ->  (
( I `  X
) ( .r `  R ) X )  =  ( 1r `  R ) )
3530, 31, 34syl2anc 661 . . . . 5  |-  ( ( A  e.  (SubRing `  R
)  /\  ( X  e.  U  /\  X  e.  A  /\  ( I `
 X )  e.  A ) )  -> 
( ( I `  X ) ( .r
`  R ) X )  =  ( 1r
`  R ) )
361, 32ressmulr 14296 . . . . . . 7  |-  ( A  e.  (SubRing `  R
)  ->  ( .r `  R )  =  ( .r `  S ) )
3736adantr 465 . . . . . 6  |-  ( ( A  e.  (SubRing `  R
)  /\  ( X  e.  U  /\  X  e.  A  /\  ( I `
 X )  e.  A ) )  -> 
( .r `  R
)  =  ( .r
`  S ) )
3837oveqd 6113 . . . . 5  |-  ( ( A  e.  (SubRing `  R
)  /\  ( X  e.  U  /\  X  e.  A  /\  ( I `
 X )  e.  A ) )  -> 
( ( I `  X ) ( .r
`  R ) X )  =  ( ( I `  X ) ( .r `  S
) X ) )
391, 33subrg1 16880 . . . . . 6  |-  ( A  e.  (SubRing `  R
)  ->  ( 1r `  R )  =  ( 1r `  S ) )
4039adantr 465 . . . . 5  |-  ( ( A  e.  (SubRing `  R
)  /\  ( X  e.  U  /\  X  e.  A  /\  ( I `
 X )  e.  A ) )  -> 
( 1r `  R
)  =  ( 1r
`  S ) )
4135, 38, 403eqtr3d 2483 . . . 4  |-  ( ( A  e.  (SubRing `  R
)  /\  ( X  e.  U  /\  X  e.  A  /\  ( I `
 X )  e.  A ) )  -> 
( ( I `  X ) ( .r
`  S ) X )  =  ( 1r
`  S ) )
4228, 41breqtrd 4321 . . 3  |-  ( ( A  e.  (SubRing `  R
)  /\  ( X  e.  U  /\  X  e.  A  /\  ( I `
 X )  e.  A ) )  ->  X ( ||r `
 S ) ( 1r `  S ) )
43 eqid 2443 . . . . . . 7  |-  (oppr `  S
)  =  (oppr `  S
)
4443, 6opprbas 16726 . . . . . 6  |-  ( Base `  S )  =  (
Base `  (oppr
`  S ) )
45 eqid 2443 . . . . . 6  |-  ( ||r `  (oppr `  S
) )  =  (
||r `  (oppr
`  S ) )
46 eqid 2443 . . . . . 6  |-  ( .r
`  (oppr
`  S ) )  =  ( .r `  (oppr `  S ) )
4744, 45, 46dvdsrmul 16745 . . . . 5  |-  ( ( X  e.  ( Base `  S )  /\  (
I `  X )  e.  ( Base `  S
) )  ->  X
( ||r `
 (oppr
`  S ) ) ( ( I `  X ) ( .r
`  (oppr
`  S ) ) X ) )
4822, 24, 47syl2anc 661 . . . 4  |-  ( ( A  e.  (SubRing `  R
)  /\  ( X  e.  U  /\  X  e.  A  /\  ( I `
 X )  e.  A ) )  ->  X ( ||r `
 (oppr
`  S ) ) ( ( I `  X ) ( .r
`  (oppr
`  S ) ) X ) )
496, 26, 43, 46opprmul 16723 . . . . 5  |-  ( ( I `  X ) ( .r `  (oppr `  S
) ) X )  =  ( X ( .r `  S ) ( I `  X
) )
502, 16, 32, 33unitrinv 16775 . . . . . . 7  |-  ( ( R  e.  Ring  /\  X  e.  U )  ->  ( X ( .r `  R ) ( I `
 X ) )  =  ( 1r `  R ) )
5130, 31, 50syl2anc 661 . . . . . 6  |-  ( ( A  e.  (SubRing `  R
)  /\  ( X  e.  U  /\  X  e.  A  /\  ( I `
 X )  e.  A ) )  -> 
( X ( .r
`  R ) ( I `  X ) )  =  ( 1r
`  R ) )
5237oveqd 6113 . . . . . 6  |-  ( ( A  e.  (SubRing `  R
)  /\  ( X  e.  U  /\  X  e.  A  /\  ( I `
 X )  e.  A ) )  -> 
( X ( .r
`  R ) ( I `  X ) )  =  ( X ( .r `  S
) ( I `  X ) ) )
5351, 52, 403eqtr3d 2483 . . . . 5  |-  ( ( A  e.  (SubRing `  R
)  /\  ( X  e.  U  /\  X  e.  A  /\  ( I `
 X )  e.  A ) )  -> 
( X ( .r
`  S ) ( I `  X ) )  =  ( 1r
`  S ) )
5449, 53syl5eq 2487 . . . 4  |-  ( ( A  e.  (SubRing `  R
)  /\  ( X  e.  U  /\  X  e.  A  /\  ( I `
 X )  e.  A ) )  -> 
( ( I `  X ) ( .r
`  (oppr
`  S ) ) X )  =  ( 1r `  S ) )
5548, 54breqtrd 4321 . . 3  |-  ( ( A  e.  (SubRing `  R
)  /\  ( X  e.  U  /\  X  e.  A  /\  ( I `
 X )  e.  A ) )  ->  X ( ||r `
 (oppr
`  S ) ) ( 1r `  S
) )
56 eqid 2443 . . . 4  |-  ( 1r
`  S )  =  ( 1r `  S
)
573, 56, 25, 43, 45isunit 16754 . . 3  |-  ( X  e.  V  <->  ( X
( ||r `
 S ) ( 1r `  S )  /\  X ( ||r `  (oppr `  S
) ) ( 1r
`  S ) ) )
5842, 55, 57sylanbrc 664 . 2  |-  ( ( A  e.  (SubRing `  R
)  /\  ( X  e.  U  /\  X  e.  A  /\  ( I `
 X )  e.  A ) )  ->  X  e.  V )
5919, 58impbida 828 1  |-  ( A  e.  (SubRing `  R
)  ->  ( X  e.  V  <->  ( X  e.  U  /\  X  e.  A  /\  ( I `
 X )  e.  A ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 965    = wceq 1369    e. wcel 1756   class class class wbr 4297   ` cfv 5423  (class class class)co 6096   Basecbs 14179   ↾s cress 14180   .rcmulr 14244   1rcur 16608   Ringcrg 16650  opprcoppr 16719   ||rcdsr 16735  Unitcui 16736   invrcinvr 16768  SubRingcsubrg 16866
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4408  ax-sep 4418  ax-nul 4426  ax-pow 4475  ax-pr 4536  ax-un 6377  ax-cnex 9343  ax-resscn 9344  ax-1cn 9345  ax-icn 9346  ax-addcl 9347  ax-addrcl 9348  ax-mulcl 9349  ax-mulrcl 9350  ax-mulcom 9351  ax-addass 9352  ax-mulass 9353  ax-distr 9354  ax-i2m1 9355  ax-1ne0 9356  ax-1rid 9357  ax-rnegex 9358  ax-rrecex 9359  ax-cnre 9360  ax-pre-lttri 9361  ax-pre-lttrn 9362  ax-pre-ltadd 9363  ax-pre-mulgt0 9364
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2573  df-ne 2613  df-nel 2614  df-ral 2725  df-rex 2726  df-reu 2727  df-rmo 2728  df-rab 2729  df-v 2979  df-sbc 3192  df-csb 3294  df-dif 3336  df-un 3338  df-in 3340  df-ss 3347  df-pss 3349  df-nul 3643  df-if 3797  df-pw 3867  df-sn 3883  df-pr 3885  df-tp 3887  df-op 3889  df-uni 4097  df-iun 4178  df-br 4298  df-opab 4356  df-mpt 4357  df-tr 4391  df-eprel 4637  df-id 4641  df-po 4646  df-so 4647  df-fr 4684  df-we 4686  df-ord 4727  df-on 4728  df-lim 4729  df-suc 4730  df-xp 4851  df-rel 4852  df-cnv 4853  df-co 4854  df-dm 4855  df-rn 4856  df-res 4857  df-ima 4858  df-iota 5386  df-fun 5425  df-fn 5426  df-f 5427  df-f1 5428  df-fo 5429  df-f1o 5430  df-fv 5431  df-riota 6057  df-ov 6099  df-oprab 6100  df-mpt2 6101  df-om 6482  df-tpos 6750  df-recs 6837  df-rdg 6871  df-er 7106  df-en 7316  df-dom 7317  df-sdom 7318  df-pnf 9425  df-mnf 9426  df-xr 9427  df-ltxr 9428  df-le 9429  df-sub 9602  df-neg 9603  df-nn 10328  df-2 10385  df-3 10386  df-ndx 14182  df-slot 14183  df-base 14184  df-sets 14185  df-ress 14186  df-plusg 14256  df-mulr 14257  df-0g 14385  df-mnd 15420  df-grp 15550  df-minusg 15551  df-subg 15683  df-mgp 16597  df-ur 16609  df-rng 16652  df-oppr 16720  df-dvdsr 16738  df-unit 16739  df-invr 16769  df-subrg 16868
This theorem is referenced by:  issubdrg  16895  gzrngunit  17883  zringunit  17919  zrngunit  17920  cphreccllem  20702
  Copyright terms: Public domain W3C validator