MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subrginv Structured version   Unicode version

Theorem subrginv 16880
Description: A subring always has the same inversion function, for elements that are invertible. (Contributed by Mario Carneiro, 4-Dec-2014.)
Hypotheses
Ref Expression
subrginv.1  |-  S  =  ( Rs  A )
subrginv.2  |-  I  =  ( invr `  R
)
subrginv.3  |-  U  =  (Unit `  S )
subrginv.4  |-  J  =  ( invr `  S
)
Assertion
Ref Expression
subrginv  |-  ( ( A  e.  (SubRing `  R
)  /\  X  e.  U )  ->  (
I `  X )  =  ( J `  X ) )

Proof of Theorem subrginv
StepHypRef Expression
1 subrgrcl 16869 . . . . 5  |-  ( A  e.  (SubRing `  R
)  ->  R  e.  Ring )
21adantr 465 . . . 4  |-  ( ( A  e.  (SubRing `  R
)  /\  X  e.  U )  ->  R  e.  Ring )
3 subrginv.1 . . . . . . . 8  |-  S  =  ( Rs  A )
43subrgbas 16873 . . . . . . 7  |-  ( A  e.  (SubRing `  R
)  ->  A  =  ( Base `  S )
)
5 eqid 2442 . . . . . . . 8  |-  ( Base `  R )  =  (
Base `  R )
65subrgss 16865 . . . . . . 7  |-  ( A  e.  (SubRing `  R
)  ->  A  C_  ( Base `  R ) )
74, 6eqsstr3d 3390 . . . . . 6  |-  ( A  e.  (SubRing `  R
)  ->  ( Base `  S )  C_  ( Base `  R ) )
87adantr 465 . . . . 5  |-  ( ( A  e.  (SubRing `  R
)  /\  X  e.  U )  ->  ( Base `  S )  C_  ( Base `  R )
)
93subrgrng 16867 . . . . . 6  |-  ( A  e.  (SubRing `  R
)  ->  S  e.  Ring )
10 subrginv.3 . . . . . . 7  |-  U  =  (Unit `  S )
11 subrginv.4 . . . . . . 7  |-  J  =  ( invr `  S
)
12 eqid 2442 . . . . . . 7  |-  ( Base `  S )  =  (
Base `  S )
1310, 11, 12rnginvcl 16767 . . . . . 6  |-  ( ( S  e.  Ring  /\  X  e.  U )  ->  ( J `  X )  e.  ( Base `  S
) )
149, 13sylan 471 . . . . 5  |-  ( ( A  e.  (SubRing `  R
)  /\  X  e.  U )  ->  ( J `  X )  e.  ( Base `  S
) )
158, 14sseldd 3356 . . . 4  |-  ( ( A  e.  (SubRing `  R
)  /\  X  e.  U )  ->  ( J `  X )  e.  ( Base `  R
) )
1612, 10unitcl 16750 . . . . . 6  |-  ( X  e.  U  ->  X  e.  ( Base `  S
) )
1716adantl 466 . . . . 5  |-  ( ( A  e.  (SubRing `  R
)  /\  X  e.  U )  ->  X  e.  ( Base `  S
) )
188, 17sseldd 3356 . . . 4  |-  ( ( A  e.  (SubRing `  R
)  /\  X  e.  U )  ->  X  e.  ( Base `  R
) )
19 eqid 2442 . . . . . . 7  |-  (Unit `  R )  =  (Unit `  R )
203, 19, 10subrguss 16879 . . . . . 6  |-  ( A  e.  (SubRing `  R
)  ->  U  C_  (Unit `  R ) )
2120sselda 3355 . . . . 5  |-  ( ( A  e.  (SubRing `  R
)  /\  X  e.  U )  ->  X  e.  (Unit `  R )
)
22 subrginv.2 . . . . . . 7  |-  I  =  ( invr `  R
)
2319, 22, 5rnginvcl 16767 . . . . . 6  |-  ( ( R  e.  Ring  /\  X  e.  (Unit `  R )
)  ->  ( I `  X )  e.  (
Base `  R )
)
241, 23sylan 471 . . . . 5  |-  ( ( A  e.  (SubRing `  R
)  /\  X  e.  (Unit `  R ) )  ->  ( I `  X )  e.  (
Base `  R )
)
2521, 24syldan 470 . . . 4  |-  ( ( A  e.  (SubRing `  R
)  /\  X  e.  U )  ->  (
I `  X )  e.  ( Base `  R
) )
26 eqid 2442 . . . . 5  |-  ( .r
`  R )  =  ( .r `  R
)
275, 26rngass 16660 . . . 4  |-  ( ( R  e.  Ring  /\  (
( J `  X
)  e.  ( Base `  R )  /\  X  e.  ( Base `  R
)  /\  ( I `  X )  e.  (
Base `  R )
) )  ->  (
( ( J `  X ) ( .r
`  R ) X ) ( .r `  R ) ( I `
 X ) )  =  ( ( J `
 X ) ( .r `  R ) ( X ( .r
`  R ) ( I `  X ) ) ) )
282, 15, 18, 25, 27syl13anc 1220 . . 3  |-  ( ( A  e.  (SubRing `  R
)  /\  X  e.  U )  ->  (
( ( J `  X ) ( .r
`  R ) X ) ( .r `  R ) ( I `
 X ) )  =  ( ( J `
 X ) ( .r `  R ) ( X ( .r
`  R ) ( I `  X ) ) ) )
29 eqid 2442 . . . . . . 7  |-  ( .r
`  S )  =  ( .r `  S
)
30 eqid 2442 . . . . . . 7  |-  ( 1r
`  S )  =  ( 1r `  S
)
3110, 11, 29, 30unitlinv 16768 . . . . . 6  |-  ( ( S  e.  Ring  /\  X  e.  U )  ->  (
( J `  X
) ( .r `  S ) X )  =  ( 1r `  S ) )
329, 31sylan 471 . . . . 5  |-  ( ( A  e.  (SubRing `  R
)  /\  X  e.  U )  ->  (
( J `  X
) ( .r `  S ) X )  =  ( 1r `  S ) )
333, 26ressmulr 14290 . . . . . . 7  |-  ( A  e.  (SubRing `  R
)  ->  ( .r `  R )  =  ( .r `  S ) )
3433adantr 465 . . . . . 6  |-  ( ( A  e.  (SubRing `  R
)  /\  X  e.  U )  ->  ( .r `  R )  =  ( .r `  S
) )
3534oveqd 6107 . . . . 5  |-  ( ( A  e.  (SubRing `  R
)  /\  X  e.  U )  ->  (
( J `  X
) ( .r `  R ) X )  =  ( ( J `
 X ) ( .r `  S ) X ) )
36 eqid 2442 . . . . . . 7  |-  ( 1r
`  R )  =  ( 1r `  R
)
373, 36subrg1 16874 . . . . . 6  |-  ( A  e.  (SubRing `  R
)  ->  ( 1r `  R )  =  ( 1r `  S ) )
3837adantr 465 . . . . 5  |-  ( ( A  e.  (SubRing `  R
)  /\  X  e.  U )  ->  ( 1r `  R )  =  ( 1r `  S
) )
3932, 35, 383eqtr4d 2484 . . . 4  |-  ( ( A  e.  (SubRing `  R
)  /\  X  e.  U )  ->  (
( J `  X
) ( .r `  R ) X )  =  ( 1r `  R ) )
4039oveq1d 6105 . . 3  |-  ( ( A  e.  (SubRing `  R
)  /\  X  e.  U )  ->  (
( ( J `  X ) ( .r
`  R ) X ) ( .r `  R ) ( I `
 X ) )  =  ( ( 1r
`  R ) ( .r `  R ) ( I `  X
) ) )
4119, 22, 26, 36unitrinv 16769 . . . . . 6  |-  ( ( R  e.  Ring  /\  X  e.  (Unit `  R )
)  ->  ( X
( .r `  R
) ( I `  X ) )  =  ( 1r `  R
) )
421, 41sylan 471 . . . . 5  |-  ( ( A  e.  (SubRing `  R
)  /\  X  e.  (Unit `  R ) )  ->  ( X ( .r `  R ) ( I `  X
) )  =  ( 1r `  R ) )
4321, 42syldan 470 . . . 4  |-  ( ( A  e.  (SubRing `  R
)  /\  X  e.  U )  ->  ( X ( .r `  R ) ( I `
 X ) )  =  ( 1r `  R ) )
4443oveq2d 6106 . . 3  |-  ( ( A  e.  (SubRing `  R
)  /\  X  e.  U )  ->  (
( J `  X
) ( .r `  R ) ( X ( .r `  R
) ( I `  X ) ) )  =  ( ( J `
 X ) ( .r `  R ) ( 1r `  R
) ) )
4528, 40, 443eqtr3d 2482 . 2  |-  ( ( A  e.  (SubRing `  R
)  /\  X  e.  U )  ->  (
( 1r `  R
) ( .r `  R ) ( I `
 X ) )  =  ( ( J `
 X ) ( .r `  R ) ( 1r `  R
) ) )
465, 26, 36rnglidm 16667 . . 3  |-  ( ( R  e.  Ring  /\  (
I `  X )  e.  ( Base `  R
) )  ->  (
( 1r `  R
) ( .r `  R ) ( I `
 X ) )  =  ( I `  X ) )
472, 25, 46syl2anc 661 . 2  |-  ( ( A  e.  (SubRing `  R
)  /\  X  e.  U )  ->  (
( 1r `  R
) ( .r `  R ) ( I `
 X ) )  =  ( I `  X ) )
485, 26, 36rngridm 16668 . . 3  |-  ( ( R  e.  Ring  /\  ( J `  X )  e.  ( Base `  R
) )  ->  (
( J `  X
) ( .r `  R ) ( 1r
`  R ) )  =  ( J `  X ) )
492, 15, 48syl2anc 661 . 2  |-  ( ( A  e.  (SubRing `  R
)  /\  X  e.  U )  ->  (
( J `  X
) ( .r `  R ) ( 1r
`  R ) )  =  ( J `  X ) )
5045, 47, 493eqtr3d 2482 1  |-  ( ( A  e.  (SubRing `  R
)  /\  X  e.  U )  ->  (
I `  X )  =  ( J `  X ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1369    e. wcel 1756    C_ wss 3327   ` cfv 5417  (class class class)co 6090   Basecbs 14173   ↾s cress 14174   .rcmulr 14238   1rcur 16602   Ringcrg 16644  Unitcui 16730   invrcinvr 16762  SubRingcsubrg 16860
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4402  ax-sep 4412  ax-nul 4420  ax-pow 4469  ax-pr 4530  ax-un 6371  ax-cnex 9337  ax-resscn 9338  ax-1cn 9339  ax-icn 9340  ax-addcl 9341  ax-addrcl 9342  ax-mulcl 9343  ax-mulrcl 9344  ax-mulcom 9345  ax-addass 9346  ax-mulass 9347  ax-distr 9348  ax-i2m1 9349  ax-1ne0 9350  ax-1rid 9351  ax-rnegex 9352  ax-rrecex 9353  ax-cnre 9354  ax-pre-lttri 9355  ax-pre-lttrn 9356  ax-pre-ltadd 9357  ax-pre-mulgt0 9358
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2429  df-cleq 2435  df-clel 2438  df-nfc 2567  df-ne 2607  df-nel 2608  df-ral 2719  df-rex 2720  df-reu 2721  df-rmo 2722  df-rab 2723  df-v 2973  df-sbc 3186  df-csb 3288  df-dif 3330  df-un 3332  df-in 3334  df-ss 3341  df-pss 3343  df-nul 3637  df-if 3791  df-pw 3861  df-sn 3877  df-pr 3879  df-tp 3881  df-op 3883  df-uni 4091  df-iun 4172  df-br 4292  df-opab 4350  df-mpt 4351  df-tr 4385  df-eprel 4631  df-id 4635  df-po 4640  df-so 4641  df-fr 4678  df-we 4680  df-ord 4721  df-on 4722  df-lim 4723  df-suc 4724  df-xp 4845  df-rel 4846  df-cnv 4847  df-co 4848  df-dm 4849  df-rn 4850  df-res 4851  df-ima 4852  df-iota 5380  df-fun 5419  df-fn 5420  df-f 5421  df-f1 5422  df-fo 5423  df-f1o 5424  df-fv 5425  df-riota 6051  df-ov 6093  df-oprab 6094  df-mpt2 6095  df-om 6476  df-tpos 6744  df-recs 6831  df-rdg 6865  df-er 7100  df-en 7310  df-dom 7311  df-sdom 7312  df-pnf 9419  df-mnf 9420  df-xr 9421  df-ltxr 9422  df-le 9423  df-sub 9596  df-neg 9597  df-nn 10322  df-2 10379  df-3 10380  df-ndx 14176  df-slot 14177  df-base 14178  df-sets 14179  df-ress 14180  df-plusg 14250  df-mulr 14251  df-0g 14379  df-mnd 15414  df-grp 15544  df-minusg 15545  df-subg 15677  df-mgp 16591  df-ur 16603  df-rng 16646  df-oppr 16714  df-dvdsr 16732  df-unit 16733  df-invr 16763  df-subrg 16862
This theorem is referenced by:  subrgdv  16881  subrgunit  16882  subrgugrp  16883  issubdrg  16889  gzrngunit  17877
  Copyright terms: Public domain W3C validator