MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subrgbas Structured version   Unicode version

Theorem subrgbas 17312
Description: Base set of a subring structure. (Contributed by Stefan O'Rear, 27-Nov-2014.)
Hypothesis
Ref Expression
subrgbas.b  |-  S  =  ( Rs  A )
Assertion
Ref Expression
subrgbas  |-  ( A  e.  (SubRing `  R
)  ->  A  =  ( Base `  S )
)

Proof of Theorem subrgbas
StepHypRef Expression
1 subrgsubg 17309 . 2  |-  ( A  e.  (SubRing `  R
)  ->  A  e.  (SubGrp `  R ) )
2 subrgbas.b . . 3  |-  S  =  ( Rs  A )
32subgbas 16079 . 2  |-  ( A  e.  (SubGrp `  R
)  ->  A  =  ( Base `  S )
)
41, 3syl 16 1  |-  ( A  e.  (SubRing `  R
)  ->  A  =  ( Base `  S )
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1383    e. wcel 1804   ` cfv 5578  (class class class)co 6281   Basecbs 14509   ↾s cress 14510  SubGrpcsubg 16069  SubRingcsubrg 17299
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1605  ax-4 1618  ax-5 1691  ax-6 1734  ax-7 1776  ax-8 1806  ax-9 1808  ax-10 1823  ax-11 1828  ax-12 1840  ax-13 1985  ax-ext 2421  ax-sep 4558  ax-nul 4566  ax-pow 4615  ax-pr 4676  ax-un 6577  ax-cnex 9551  ax-resscn 9552  ax-1cn 9553  ax-icn 9554  ax-addcl 9555  ax-addrcl 9556  ax-mulcl 9557  ax-mulrcl 9558  ax-i2m1 9563  ax-1ne0 9564  ax-rrecex 9567  ax-cnre 9568
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 975  df-3an 976  df-tru 1386  df-ex 1600  df-nf 1604  df-sb 1727  df-eu 2272  df-mo 2273  df-clab 2429  df-cleq 2435  df-clel 2438  df-nfc 2593  df-ne 2640  df-ral 2798  df-rex 2799  df-reu 2800  df-rab 2802  df-v 3097  df-sbc 3314  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-pss 3477  df-nul 3771  df-if 3927  df-pw 3999  df-sn 4015  df-pr 4017  df-tp 4019  df-op 4021  df-uni 4235  df-iun 4317  df-br 4438  df-opab 4496  df-mpt 4497  df-tr 4531  df-eprel 4781  df-id 4785  df-po 4790  df-so 4791  df-fr 4828  df-we 4830  df-ord 4871  df-on 4872  df-lim 4873  df-suc 4874  df-xp 4995  df-rel 4996  df-cnv 4997  df-co 4998  df-dm 4999  df-rn 5000  df-res 5001  df-ima 5002  df-iota 5541  df-fun 5580  df-fn 5581  df-f 5582  df-f1 5583  df-fo 5584  df-f1o 5585  df-fv 5586  df-ov 6284  df-oprab 6285  df-mpt2 6286  df-om 6686  df-recs 7044  df-rdg 7078  df-nn 10543  df-ndx 14512  df-slot 14513  df-base 14514  df-sets 14515  df-ress 14516  df-subg 16072  df-ring 17074  df-subrg 17301
This theorem is referenced by:  subrg1  17313  subrgmcl  17315  subrgdvds  17317  subrguss  17318  subrginv  17319  subrgdv  17320  subrgunit  17321  issubdrg  17328  subsubrg  17329  abvres  17362  sraassa  17848  resspsrbas  17944  resspsradd  17945  resspsrmul  17946  resspsrvsca  17947  subrgpsr  17948  subrgascl  18037  subrgasclcl  18038  qsssubdrg  18351  gzrngunitlem  18356  gzrngunit  18357  zrngunit  18394  prmirredlemOLD  18399  prmirredOLD  18401  expghmOLD  18403  mulgghm2OLD  18407  mulgrhmOLD  18408  mulgrhm2OLD  18409  znlidlOLD  18447  dmatcrng  18877  scmatcrng  18896  scmatstrbas  18901  sranlm  21066  isclmi  21450  plypf1  22482
  Copyright terms: Public domain W3C validator