MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subrg1cl Structured version   Unicode version

Theorem subrg1cl 17308
Description: A subring contains the multiplicative identity. (Contributed by Stefan O'Rear, 27-Nov-2014.)
Hypothesis
Ref Expression
subrg1cl.a  |-  .1.  =  ( 1r `  R )
Assertion
Ref Expression
subrg1cl  |-  ( A  e.  (SubRing `  R
)  ->  .1.  e.  A )

Proof of Theorem subrg1cl
StepHypRef Expression
1 eqid 2467 . . . 4  |-  ( Base `  R )  =  (
Base `  R )
2 subrg1cl.a . . . 4  |-  .1.  =  ( 1r `  R )
31, 2issubrg 17300 . . 3  |-  ( A  e.  (SubRing `  R
)  <->  ( ( R  e.  Ring  /\  ( Rs  A )  e.  Ring )  /\  ( A  C_  ( Base `  R )  /\  .1.  e.  A ) ) )
43simprbi 464 . 2  |-  ( A  e.  (SubRing `  R
)  ->  ( A  C_  ( Base `  R
)  /\  .1.  e.  A ) )
54simprd 463 1  |-  ( A  e.  (SubRing `  R
)  ->  .1.  e.  A )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1379    e. wcel 1767    C_ wss 3481   ` cfv 5594  (class class class)co 6295   Basecbs 14507   ↾s cress 14508   1rcur 17025   Ringcrg 17070  SubRingcsubrg 17296
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4574  ax-nul 4582  ax-pow 4631  ax-pr 4692
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2822  df-rex 2823  df-rab 2826  df-v 3120  df-sbc 3337  df-dif 3484  df-un 3486  df-in 3488  df-ss 3495  df-nul 3791  df-if 3946  df-pw 4018  df-sn 4034  df-pr 4036  df-op 4040  df-uni 4252  df-br 4454  df-opab 4512  df-mpt 4513  df-id 4801  df-xp 5011  df-rel 5012  df-cnv 5013  df-co 5014  df-dm 5015  df-rn 5016  df-res 5017  df-ima 5018  df-iota 5557  df-fun 5596  df-fv 5602  df-ov 6298  df-subrg 17298
This theorem is referenced by:  subrg1  17310  subrgsubm  17313  issubrg2  17320  subrgint  17322  subsubrg  17326  issubassa2  17864  subrgpsr  17944  mplassa  17986  mplbas2  18004  mplbas2OLD  18005  ply1assa  18108  zsssubrg  18346  taylply2  22630  subrgchr  27609  cnsrexpcl  31043  rngunsnply  31051
  Copyright terms: Public domain W3C validator