MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subrg1 Structured version   Unicode version

Theorem subrg1 17634
Description: A subring always has the same multiplicative identity. (Contributed by Stefan O'Rear, 27-Nov-2014.)
Hypotheses
Ref Expression
subrg1.1  |-  S  =  ( Rs  A )
subrg1.2  |-  .1.  =  ( 1r `  R )
Assertion
Ref Expression
subrg1  |-  ( A  e.  (SubRing `  R
)  ->  .1.  =  ( 1r `  S ) )

Proof of Theorem subrg1
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 eqid 2454 . . . . 5  |-  ( 1r
`  R )  =  ( 1r `  R
)
21subrg1cl 17632 . . . 4  |-  ( A  e.  (SubRing `  R
)  ->  ( 1r `  R )  e.  A
)
3 subrg1.1 . . . . 5  |-  S  =  ( Rs  A )
43subrgbas 17633 . . . 4  |-  ( A  e.  (SubRing `  R
)  ->  A  =  ( Base `  S )
)
52, 4eleqtrd 2544 . . 3  |-  ( A  e.  (SubRing `  R
)  ->  ( 1r `  R )  e.  (
Base `  S )
)
6 eqid 2454 . . . . . . . 8  |-  ( Base `  R )  =  (
Base `  R )
76subrgss 17625 . . . . . . 7  |-  ( A  e.  (SubRing `  R
)  ->  A  C_  ( Base `  R ) )
84, 7eqsstr3d 3524 . . . . . 6  |-  ( A  e.  (SubRing `  R
)  ->  ( Base `  S )  C_  ( Base `  R ) )
98sselda 3489 . . . . 5  |-  ( ( A  e.  (SubRing `  R
)  /\  x  e.  ( Base `  S )
)  ->  x  e.  ( Base `  R )
)
10 subrgrcl 17629 . . . . . . 7  |-  ( A  e.  (SubRing `  R
)  ->  R  e.  Ring )
11 eqid 2454 . . . . . . . 8  |-  ( .r
`  R )  =  ( .r `  R
)
126, 11, 1ringidmlem 17416 . . . . . . 7  |-  ( ( R  e.  Ring  /\  x  e.  ( Base `  R
) )  ->  (
( ( 1r `  R ) ( .r
`  R ) x )  =  x  /\  ( x ( .r
`  R ) ( 1r `  R ) )  =  x ) )
1310, 12sylan 469 . . . . . 6  |-  ( ( A  e.  (SubRing `  R
)  /\  x  e.  ( Base `  R )
)  ->  ( (
( 1r `  R
) ( .r `  R ) x )  =  x  /\  (
x ( .r `  R ) ( 1r
`  R ) )  =  x ) )
143, 11ressmulr 14841 . . . . . . . . . 10  |-  ( A  e.  (SubRing `  R
)  ->  ( .r `  R )  =  ( .r `  S ) )
1514oveqd 6287 . . . . . . . . 9  |-  ( A  e.  (SubRing `  R
)  ->  ( ( 1r `  R ) ( .r `  R ) x )  =  ( ( 1r `  R
) ( .r `  S ) x ) )
1615eqeq1d 2456 . . . . . . . 8  |-  ( A  e.  (SubRing `  R
)  ->  ( (
( 1r `  R
) ( .r `  R ) x )  =  x  <->  ( ( 1r `  R ) ( .r `  S ) x )  =  x ) )
1714oveqd 6287 . . . . . . . . 9  |-  ( A  e.  (SubRing `  R
)  ->  ( x
( .r `  R
) ( 1r `  R ) )  =  ( x ( .r
`  S ) ( 1r `  R ) ) )
1817eqeq1d 2456 . . . . . . . 8  |-  ( A  e.  (SubRing `  R
)  ->  ( (
x ( .r `  R ) ( 1r
`  R ) )  =  x  <->  ( x
( .r `  S
) ( 1r `  R ) )  =  x ) )
1916, 18anbi12d 708 . . . . . . 7  |-  ( A  e.  (SubRing `  R
)  ->  ( (
( ( 1r `  R ) ( .r
`  R ) x )  =  x  /\  ( x ( .r
`  R ) ( 1r `  R ) )  =  x )  <-> 
( ( ( 1r
`  R ) ( .r `  S ) x )  =  x  /\  ( x ( .r `  S ) ( 1r `  R
) )  =  x ) ) )
2019biimpa 482 . . . . . 6  |-  ( ( A  e.  (SubRing `  R
)  /\  ( (
( 1r `  R
) ( .r `  R ) x )  =  x  /\  (
x ( .r `  R ) ( 1r
`  R ) )  =  x ) )  ->  ( ( ( 1r `  R ) ( .r `  S
) x )  =  x  /\  ( x ( .r `  S
) ( 1r `  R ) )  =  x ) )
2113, 20syldan 468 . . . . 5  |-  ( ( A  e.  (SubRing `  R
)  /\  x  e.  ( Base `  R )
)  ->  ( (
( 1r `  R
) ( .r `  S ) x )  =  x  /\  (
x ( .r `  S ) ( 1r
`  R ) )  =  x ) )
229, 21syldan 468 . . . 4  |-  ( ( A  e.  (SubRing `  R
)  /\  x  e.  ( Base `  S )
)  ->  ( (
( 1r `  R
) ( .r `  S ) x )  =  x  /\  (
x ( .r `  S ) ( 1r
`  R ) )  =  x ) )
2322ralrimiva 2868 . . 3  |-  ( A  e.  (SubRing `  R
)  ->  A. x  e.  ( Base `  S
) ( ( ( 1r `  R ) ( .r `  S
) x )  =  x  /\  ( x ( .r `  S
) ( 1r `  R ) )  =  x ) )
243subrgring 17627 . . . 4  |-  ( A  e.  (SubRing `  R
)  ->  S  e.  Ring )
25 eqid 2454 . . . . 5  |-  ( Base `  S )  =  (
Base `  S )
26 eqid 2454 . . . . 5  |-  ( .r
`  S )  =  ( .r `  S
)
27 eqid 2454 . . . . 5  |-  ( 1r
`  S )  =  ( 1r `  S
)
2825, 26, 27isringid 17419 . . . 4  |-  ( S  e.  Ring  ->  ( ( ( 1r `  R
)  e.  ( Base `  S )  /\  A. x  e.  ( Base `  S ) ( ( ( 1r `  R
) ( .r `  S ) x )  =  x  /\  (
x ( .r `  S ) ( 1r
`  R ) )  =  x ) )  <-> 
( 1r `  S
)  =  ( 1r
`  R ) ) )
2924, 28syl 16 . . 3  |-  ( A  e.  (SubRing `  R
)  ->  ( (
( 1r `  R
)  e.  ( Base `  S )  /\  A. x  e.  ( Base `  S ) ( ( ( 1r `  R
) ( .r `  S ) x )  =  x  /\  (
x ( .r `  S ) ( 1r
`  R ) )  =  x ) )  <-> 
( 1r `  S
)  =  ( 1r
`  R ) ) )
305, 23, 29mpbi2and 919 . 2  |-  ( A  e.  (SubRing `  R
)  ->  ( 1r `  S )  =  ( 1r `  R ) )
31 subrg1.2 . 2  |-  .1.  =  ( 1r `  R )
3230, 31syl6reqr 2514 1  |-  ( A  e.  (SubRing `  R
)  ->  .1.  =  ( 1r `  S ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 367    = wceq 1398    e. wcel 1823   A.wral 2804   ` cfv 5570  (class class class)co 6270   Basecbs 14716   ↾s cress 14717   .rcmulr 14785   1rcur 17348   Ringcrg 17393  SubRingcsubrg 17620
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1623  ax-4 1636  ax-5 1709  ax-6 1752  ax-7 1795  ax-8 1825  ax-9 1827  ax-10 1842  ax-11 1847  ax-12 1859  ax-13 2004  ax-ext 2432  ax-sep 4560  ax-nul 4568  ax-pow 4615  ax-pr 4676  ax-un 6565  ax-cnex 9537  ax-resscn 9538  ax-1cn 9539  ax-icn 9540  ax-addcl 9541  ax-addrcl 9542  ax-mulcl 9543  ax-mulrcl 9544  ax-mulcom 9545  ax-addass 9546  ax-mulass 9547  ax-distr 9548  ax-i2m1 9549  ax-1ne0 9550  ax-1rid 9551  ax-rnegex 9552  ax-rrecex 9553  ax-cnre 9554  ax-pre-lttri 9555  ax-pre-lttrn 9556  ax-pre-ltadd 9557  ax-pre-mulgt0 9558
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 972  df-3an 973  df-tru 1401  df-ex 1618  df-nf 1622  df-sb 1745  df-eu 2288  df-mo 2289  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2651  df-nel 2652  df-ral 2809  df-rex 2810  df-reu 2811  df-rmo 2812  df-rab 2813  df-v 3108  df-sbc 3325  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-pss 3477  df-nul 3784  df-if 3930  df-pw 4001  df-sn 4017  df-pr 4019  df-tp 4021  df-op 4023  df-uni 4236  df-iun 4317  df-br 4440  df-opab 4498  df-mpt 4499  df-tr 4533  df-eprel 4780  df-id 4784  df-po 4789  df-so 4790  df-fr 4827  df-we 4829  df-ord 4870  df-on 4871  df-lim 4872  df-suc 4873  df-xp 4994  df-rel 4995  df-cnv 4996  df-co 4997  df-dm 4998  df-rn 4999  df-res 5000  df-ima 5001  df-iota 5534  df-fun 5572  df-fn 5573  df-f 5574  df-f1 5575  df-fo 5576  df-f1o 5577  df-fv 5578  df-riota 6232  df-ov 6273  df-oprab 6274  df-mpt2 6275  df-om 6674  df-recs 7034  df-rdg 7068  df-er 7303  df-en 7510  df-dom 7511  df-sdom 7512  df-pnf 9619  df-mnf 9620  df-xr 9621  df-ltxr 9622  df-le 9623  df-sub 9798  df-neg 9799  df-nn 10532  df-2 10590  df-3 10591  df-ndx 14719  df-slot 14720  df-base 14721  df-sets 14722  df-ress 14723  df-plusg 14797  df-mulr 14798  df-0g 14931  df-mgm 16071  df-sgrp 16110  df-mnd 16120  df-subg 16397  df-mgp 17337  df-ur 17349  df-ring 17395  df-subrg 17622
This theorem is referenced by:  subrguss  17639  subrginv  17640  subrgunit  17642  subsubrg  17650  sralmod  18028  subrgnzr  18111  ressascl  18188  mpl1  18301  subrgmvr  18318  gzrngunitlem  18677  zring1  18694  re1r  18822  scmatsrng1  19192  scmatmhm  19203  clm1  21739  qrng1  24005  subrgchr  28019
  Copyright terms: Public domain W3C validator