Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  subrg1 Structured version   Unicode version

Theorem subrg1 17222
 Description: A subring always has the same multiplicative identity. (Contributed by Stefan O'Rear, 27-Nov-2014.)
Hypotheses
Ref Expression
subrg1.1 s
subrg1.2
Assertion
Ref Expression
subrg1 SubRing

Proof of Theorem subrg1
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 eqid 2467 . . . . 5
21subrg1cl 17220 . . . 4 SubRing
3 subrg1.1 . . . . 5 s
43subrgbas 17221 . . . 4 SubRing
52, 4eleqtrd 2557 . . 3 SubRing
6 eqid 2467 . . . . . . . 8
76subrgss 17213 . . . . . . 7 SubRing
84, 7eqsstr3d 3539 . . . . . 6 SubRing
98sselda 3504 . . . . 5 SubRing
10 subrgrcl 17217 . . . . . . 7 SubRing
11 eqid 2467 . . . . . . . 8
126, 11, 1rngidmlem 17008 . . . . . . 7
1310, 12sylan 471 . . . . . 6 SubRing
143, 11ressmulr 14604 . . . . . . . . . 10 SubRing
1514oveqd 6299 . . . . . . . . 9 SubRing
1615eqeq1d 2469 . . . . . . . 8 SubRing
1714oveqd 6299 . . . . . . . . 9 SubRing
1817eqeq1d 2469 . . . . . . . 8 SubRing
1916, 18anbi12d 710 . . . . . . 7 SubRing
2019biimpa 484 . . . . . 6 SubRing
2113, 20syldan 470 . . . . 5 SubRing
229, 21syldan 470 . . . 4 SubRing
2322ralrimiva 2878 . . 3 SubRing
243subrgrng 17215 . . . 4 SubRing
25 eqid 2467 . . . . 5
26 eqid 2467 . . . . 5
27 eqid 2467 . . . . 5
2825, 26, 27isrngid 17011 . . . 4
2924, 28syl 16 . . 3 SubRing
305, 23, 29mpbi2and 919 . 2 SubRing
31 subrg1.2 . 2
3230, 31syl6reqr 2527 1 SubRing
 Colors of variables: wff setvar class Syntax hints:   wi 4   wb 184   wa 369   wceq 1379   wcel 1767  wral 2814  cfv 5586  (class class class)co 6282  cbs 14486   ↾s cress 14487  cmulr 14552  cur 16943  crg 16986  SubRingcsubrg 17208 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6574  ax-cnex 9544  ax-resscn 9545  ax-1cn 9546  ax-icn 9547  ax-addcl 9548  ax-addrcl 9549  ax-mulcl 9550  ax-mulrcl 9551  ax-mulcom 9552  ax-addass 9553  ax-mulass 9554  ax-distr 9555  ax-i2m1 9556  ax-1ne0 9557  ax-1rid 9558  ax-rnegex 9559  ax-rrecex 9560  ax-cnre 9561  ax-pre-lttri 9562  ax-pre-lttrn 9563  ax-pre-ltadd 9564  ax-pre-mulgt0 9565 This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2819  df-rex 2820  df-reu 2821  df-rmo 2822  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-pss 3492  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-tp 4032  df-op 4034  df-uni 4246  df-iun 4327  df-br 4448  df-opab 4506  df-mpt 4507  df-tr 4541  df-eprel 4791  df-id 4795  df-po 4800  df-so 4801  df-fr 4838  df-we 4840  df-ord 4881  df-on 4882  df-lim 4883  df-suc 4884  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5549  df-fun 5588  df-fn 5589  df-f 5590  df-f1 5591  df-fo 5592  df-f1o 5593  df-fv 5594  df-riota 6243  df-ov 6285  df-oprab 6286  df-mpt2 6287  df-om 6679  df-recs 7039  df-rdg 7073  df-er 7308  df-en 7514  df-dom 7515  df-sdom 7516  df-pnf 9626  df-mnf 9627  df-xr 9628  df-ltxr 9629  df-le 9630  df-sub 9803  df-neg 9804  df-nn 10533  df-2 10590  df-3 10591  df-ndx 14489  df-slot 14490  df-base 14491  df-sets 14492  df-ress 14493  df-plusg 14564  df-mulr 14565  df-0g 14693  df-mnd 15728  df-subg 15993  df-mgp 16932  df-ur 16944  df-rng 16988  df-subrg 17210 This theorem is referenced by:  subrguss  17227  subrginv  17228  subrgunit  17230  subsubrg  17238  sralmod  17616  subrgnzr  17697  ressascl  17764  mpl1  17877  subrgmvr  17894  gzrngunitlem  18250  zring1  18267  zrng1  18273  prmirredlemOLD  18293  mulgrhmOLD  18302  mulgrhm2OLD  18303  re1r  18416  scmatsrng1  18792  scmatmhm  18803  clm1  21308  qrng1  23535  subrgchr  27447
 Copyright terms: Public domain W3C validator